Участник:Pandvik/Ортогонализация Грама - Шмидта: различия между версиями
Pandvik (обсуждение | вклад) |
Vvf63 (обсуждение | вклад) |
||
Строка 36: | Строка 36: | ||
== Схема реализации последовательного алгоритма == | == Схема реализации последовательного алгоритма == | ||
+ | 1. <math>\mathbf{b}_1 = \mathbf{a}_1</math> | ||
+ | |||
+ | 2. <math>\mathbf{b}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} \mathbf{proj}_{\mathbf{b}_{i-1}} \mathbf{a}_i</math> <math>(i = 2 \cdots N)</math>, для каждого <math>\mathbf{proj}_b a</math> выполняется <math>\frac{\left \langle a,b \right \rangle}{\left \langle b,b \right \rangle}b</math>. | ||
== Последовательная сложность алгоритма == | == Последовательная сложность алгоритма == |
Версия 22:31, 13 октября 2016
Авторы описания алгоритма: Павлов Андрей, Филимонов Владимир.
Содержание
- 1 ЧАСТЬ. Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 ЧАСТЬ. Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 ЧАСТЬ. Свойства и структура алгоритмов
1.1 Общее описание алгоритма
В конечномерном евклидовом пространстве существует ортонормированный базис. Для доказательства этого факта требуется находить и строить такие базисы. Построить ортонормированный базис можно, отталкиваясь от некоторого исходного базиса, при помощи алгоритма, который называют процессом ортогонализации Грама — Шмидта. Процесс ортогонализации Грама-Шмидта используется для квадратных матриц, которые преобразуются, либо уже преобразованы, к верхнему(нижнему) треугольному виду. Процесс ортогонализации Грама-Шмидта нашёл применение в оптимизации оценивания параметров моделей управления объектом, в протоколах безопасности, в обработке сигналов, в вычислении локальных минимумов целочисленных решёток и многом другом. Обычно, процесс ортогонализации используется как промежуточный шаг в других алгоритмах для уменьшения количества вычислений.
1.2 Математическое описание алгоритма
Исходные данные: квадратная матрица A с линейно независимыми векторами \mathbf{a}_1,...,\mathbf{a}_N.
Определяется оператор проекции \mathbf{proj}_b a = \frac{\left \langle a,b \right \rangle}{\left \langle b,b \right \rangle }b, где \left \langle a,b \right \rangle - скалярное произведение векторов a и b. Данный оператор используется для проецирования вектора a коллинеарно вектору b.
\mathbf{b}_1 = \mathbf{a}_1
\mathbf{b}_2 = \mathbf{a}_2 - \mathbf{proj}_{\mathbf{b}_1} \mathbf{a}_2
\mathbf{b}_3 = \mathbf{a}_3 - \mathbf{proj}_{\mathbf{b}_1} \mathbf{a}_3 - \mathbf{proj}_{\mathbf{b}_2} \mathbf{a}_3
\mathbf{b}_4 = \mathbf{a}_4 - \mathbf{proj}_{\mathbf{b}_1} \mathbf{a}_4 - \mathbf{proj}_{\mathbf{b}_2} \mathbf{a}_4 - \mathbf{proj}_{\mathbf{b}_3} \mathbf{a}_4
\vdots
\mathbf{b}_N = \mathbf{a}_N - \sum_{j=1}^{N-1} \mathbf{proj}_{\mathbf{b}_j} \mathbf{a}_N
На основе каждого вектора \mathbf{b}_j (j = 1 \cdots N) может быть получен нормированный вектор \mathbf{e}_j = \frac{\mathbf{b}_j}{||\mathbf{b}_j||}.
Результаты процесса ортогонализации Грама-Шмидта: \mathbf{b}_1\cdots\mathbf{b}_N - система ортогональных векторов либо система ортонормированных векторов \mathbf{e}_1\cdots\mathbf{e}_N.
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1. \mathbf{b}_1 = \mathbf{a}_1
2. \mathbf{b}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} \mathbf{proj}_{\mathbf{b}_{i-1}} \mathbf{a}_i (i = 2 \cdots N), для каждого \mathbf{proj}_b a выполняется \frac{\left \langle a,b \right \rangle}{\left \langle b,b \right \rangle}b.
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
Опишем информационный граф алгоритма.
Для вычисления b_i требуется найти proj_{b_{j}}a_{i} для всех j \in [1, i]. Следовательно для полного вычисления вектора b_{i} требуется знать все b_{j} с меньшим индексом. Такая зависимость по данным очень не удачна для параллелизма. Однако, если разбить процесс вычисления b_{i} на несколько этапов, соответствующих функциям проекции (proj_{b_{j}}a_{i}), то это позволит производить некоторые предварительные вычисления для b_{j} до момента, когда станут известны все предшествующие ей b_{i}.
На Рис. 1 изображена зависимость каждого из этапов от предыдущих вычислений. Первая строка овалов содержит все проекции, зависящие от b_{1}, вторая строка - все проекции, зависящие от b_{2}, \;\cdots\; самая верхняя строка содержит проекцию, которая зависит от b_{N-1}.
Рис. 2 показывает зависимость по данным немного в другом формате. Каждая строка представляет собой набор данных, которые требуются для вычисления b_{i} из первого столбца. Второй и последующие столбцы группируют проекции, зависящие от одной из b_{i} и, с помощью стрелки, показывают эту зависимость.