Уровень алгоритма

Участник:Логвиненко Александра: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 13: Строка 13:
 
== Свойства и структура алгоритма ==
 
== Свойства и структура алгоритма ==
 
=== Общее описание алгоритма ===
 
=== Общее описание алгоритма ===
 +
'''Cамоорганизующиеся карты Кохонена''' представляет собой вычислительный метод для визуализации и анализа многомерных данных, прежде всего экспериментально полученной информации.
  
 +
[[Файл:Example.jpg]]
  
  
 +
Алгоритм SOM вырос из ранних нейросетевых моделей, особенно моделей ассоциативной памяти и адаптивное обучение (ср Кохонена 1984).
  
  
Строка 33: Строка 36:
  
  
 +
Метод был предложен финским учёным Теуво Кохоненом в 1984 году. Особый вид нейронных сетей, известных как самоорганизующиеся карты Кохонена, которые используются для решения задач кластеризации данных.
  
Метод был предложен финским учёным Теуво Кохоненом в 1984 году. Особый вид нейронных сетей, известных как самоорганизующиеся карты Кохонена, которые используются для решения задач кластеризации данных. Помимо карт Кохонена существует целый класс нейросетей — нейронные сети Кохонена, основным элементом которых является слой Кохонена.
+
Алгоритм обучения Кохонена и карты Кохонена послужили основой для большого количества исследований в области нейронных сетей, благодаря чему Кохонен считается самым цитируемым финским ученым. Количество научных работ по картам Кохонена составляет около 8 000. Т. Кохонен — автор более 300 публикаций и 4 монографий
 
 
Алгоритм обучения Кохонена и карты Кохонена послужили основой для большого количества исследований в области нейронных сетей, благодаря чему Кохонен считается самым цитируемым финским ученым. Количество научных работ по картам Кохонена составляет около 8 000[4].
 
 
 
Т. Кохонен — автор более 300 публикаций и 4 монографий
 
  
 
=== Математическое описание алгоритма ===
 
=== Математическое описание алгоритма ===

Версия 22:43, 13 октября 2016


Алгоритм кластеризации, основанный на сетях Кохоннена
Последовательный алгоритм
Последовательная сложность [math]O(n^3)[/math]
Объём входных данных [math]\frac{n (n + 1)}{2}[/math]
Объём выходных данных [math]\frac{n (n + 1)}{2}[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(n)[/math]
Ширина ярусно-параллельной формы [math]O(n^2)[/math]


Основные авторы описания: Логвиненко Александра 613 и Адиев Тохтар 616

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Cамоорганизующиеся карты Кохонена представляет собой вычислительный метод для визуализации и анализа многомерных данных, прежде всего экспериментально полученной информации.

Example.jpg


Алгоритм SOM вырос из ранних нейросетевых моделей, особенно моделей ассоциативной памяти и адаптивное обучение (ср Кохонена 1984).









Метод был предложен финским учёным Теуво Кохоненом в 1984 году. Особый вид нейронных сетей, известных как самоорганизующиеся карты Кохонена, которые используются для решения задач кластеризации данных.

Алгоритм обучения Кохонена и карты Кохонена послужили основой для большого количества исследований в области нейронных сетей, благодаря чему Кохонен считается самым цитируемым финским ученым. Количество научных работ по картам Кохонена составляет около 8 000. Т. Кохонен — автор более 300 публикаций и 4 монографий

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Особенности реализации последовательного алгоритма

1.11 Локальность данных и вычислений

1.11.1 Локальность реализации алгоритма

1.11.1.1 Структура обращений в память и качественная оценка локальности
1.11.1.2 Количественная оценка локальности

1.12 Возможные способы и особенности параллельной реализации алгоритма

1.13 Масштабируемость алгоритма и его реализации

1.13.1 Масштабируемость алгоритма

1.13.2 Масштабируемость реализации алгоритма

1.14 Динамические характеристики и эффективность реализации алгоритма

1.15 Выводы для классов архитектур

1.16 Существующие реализации алгоритма

2 Литература