Уровень алгоритма

Участник:SKirill/Метод Ньютона решения систем нелинейных уравнений: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 81: Строка 81:
 
<math>\frac{\partial F(x^{(k)})}{\partial x}\Delta x^{(k)} = -F(x^{(k)}) \qquad(*)</math>
 
<math>\frac{\partial F(x^{(k)})}{\partial x}\Delta x^{(k)} = -F(x^{(k)}) \qquad(*)</math>
  
Для нахождения значения <math>\Delta x^{(k)}</math>, по которому вычисляется значение вектора <math>\overline{x}</math>, на очередной итерации вычисляется значение: <math>x^{(k+1)} = x^{(k)} + \Delta x^{(k)}</math>
+
Для нахождения значения <math>\Delta x^{(k)}</math>, по которому вычисляется значение вектора <math>\overline{x}</math> на очередной итерации: <math>x^{(k+1)} = x^{(k)} + \Delta x^{(k)}</math>
  
 
=== Макроструктура алгоритма ===
 
=== Макроструктура алгоритма ===

Версия 12:37, 14 октября 2016


Метод Ньютона решения систем нелинейных уравнений
Последовательный алгоритм
Объём выходных данных n-мерный вектор

Авторы: Шохин К.О., Лебедев А.А.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод Ньютона решения систем нелинейных уравнений является обобщением метода Ньютона решения нелинейных уравнений, который основан на идеи линеаризации. Пусть F(x) : R^1 \to R^1 - дифференцируемая функция и необходимо решить уравнение F(x) = 0.

Взяв некоторое x_0 в качестве начального приближения решения, мы можем построить линейную аппроксимацию

F(x) в окрестности x_0 : F(x_0+h) \approx F(x_0)+F^'(x_0)h и решить получающееся линейное уравнение F(x_0 )+F^' (x_0 )h =0.


Таким образом получаем итеративный метод : x_{k+1} = x_k - {F^'(x_k)}^{-1}F(x_k) , k = 0,1,\ldots


Данный метод был предложен Ньютоном в 1669 году. Более точно, Ньютон оперировал только с полиномами; в выражении для F(x+h) он отбрасывал члены более высокого порядка по h , чем линейные. Ученик Ньютона Рафсон в 1690 г. предложил общую форму метода (т. е. не предполагалось что F(x) обязательно полином и использовалось понятие производной), поэтому часто говорят о методе Ньютона—Рафсона. Дальнейшее развитие исследований связано с именами таких известных математиков, как Фурье, Коши и другие. Например, Фурье доказал в 1818 г., что метод сходится квадратично в окрестности корня, а Коши (1829, 1847) предложил многомерное обобщение метода и использовал метод для доказательства существования решения уравнения.


1.2 Математическое описание алгоритма

Пусть дана система из n нелинейных уравнений с n неизвестными.

\left\{\begin{matrix} f_1(x_1, \ldots, x_n) = 0, \\ f_2(x_1, \ldots, x_n) = 0, \\ \vdots \\ f_n(x_1, \ldots, x_n) = 0. \end{matrix}\right. , где f_i(x_1, \ldots,x_n) : R^n \to R, i = 1, \ldots ,n - нелинейные функции, определенные и непрерывно дифференцируемые в некоторой


области G \subset R^n.

Запишем ее в векторном виде:

\overline{x} = {(x_1,x_2,\ldots,x_n)}^T, F(x) ={[f_1(x),f_2(x),\ldots,f_n(x)]}^T, F(x)=0

Требуется найти такой вектор \overline{x^*} = {(x^*_1,x^*_2,\ldots,x^*_n)}^T, который, при подстановке в исходную систему, превращает каждое уравнение в верное числовое равенство.


При таком подходе формула для нахождения решения является естественным обобщением формулы одномерного итеративного метода:

x^{(k+1)} = x^{(k)} - W^{-1}(x^{(k)})\cdot F(x^{(k)}) , k=0,1,2,\ldots, где

W = \begin{pmatrix} \frac{\partial{f_1(x_1)}}{\partial{x_1}} & \cdots & \frac{\partial{f_1(x_n)}}{\partial{x_n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial{f_n(x_1)}}{\partial{x_1}} & \cdots & \frac{\partial{f_n(x_n)}}{\partial{x_n}} \end{pmatrix} – матрица Якоби.

В рассмотренных предположениях относительно функции F(\cdot) при выборе начального приближения x^{(0)} из достаточно малой окрестности решения \overline{x^*} имеет место сходимость последовательности \{x^{(k)}\}. При дополнительном предположении F(\cdot) \in C^2 имеет место квадратичная сходимость метода.

В качестве критерия окончания процесса итераций обычно берут условие \left \| x^{(k+1)} - x^{(k)} \right \| \lt \varepsilon, где \varepsilon - требуемая точность решения.

Основная сложность метода Ньютона заключается в обращении матрицы Якоби. Вводя обозначение \Delta x^{(k)} = x^{(k+1)} - x^{(k)} получаем СЛАУ для вычисления \Delta x^{(k)}: \frac{\partial{F(x^{(k)})}}{\partial{x}} = -F(x^{(k)})

Тогда x^{(k+1)} = x^{(k)}+ \Delta x^{(k)}.

Часто метод Ньютона модифицируют следующим образом. По ходу вычислений или заранее выбирают возрастающую последовательность чисел n_0=0, n_1,\ldots

При n_i \le k \lt n_{i+1} вычисление \Delta x^{(k)} осуществляют по следующей формуле:

\frac{\partial{F(x^{n_i})}}{\partial{x}} = -F(x^{(k)})

Увеличение числа итераций, сопровождающее такую модификацию, компенсируется «дешевизной» одного шага итерации.


1.3 Вычислительное ядро алгоритма

Основная вычислительная нагрузка алгоритма заключается в решении СЛАУ:

\frac{\partial F(x^{(k)})}{\partial x}\Delta x^{(k)} = -F(x^{(k)}) \qquad(*)

Для нахождения значения \Delta x^{(k)}, по которому вычисляется значение вектора \overline{x} на очередной итерации: x^{(k+1)} = x^{(k)} + \Delta x^{(k)}

1.4 Макроструктура алгоритма

Как уже было сказано, основную часть каждой итерации метода составляет нахождение матрицы Якоби и решение СЛАУ (*) для нахождения \Delta x^{(k)}.

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Масштабируемость алгоритма и его реализации

2.2 Существующие реализации алгоритма

3 Литература

Тыртышников Е. Е. Методы численного анализа — М., Академия, 2007. - 320 c.
Бахвалов Н. С., Жидков Н. П., Кобельков. Г. М. — 6-е изд. — М. : БИНОМ. Лаборатория знаний, 2008. — 636 с.


<references \>