Однокубитное преобразование вектора-состояния: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 44: Строка 44:
  
 
=== Макроструктура алгоритма ===
 
=== Макроструктура алгоритма ===
 
+
Как записано и в [[#Вычислительное ядро алгоритма|описании ядра алгоритма]], основную часть метода составляют независимые вычсиления элементов выходного вектора.
  
 
=== Описание схемы реализации последовательного алгоритма ===
 
=== Описание схемы реализации последовательного алгоритма ===

Версия 21:09, 3 декабря 2014


1 Описание свойств и структуры алгоритма

1.1 Общее описание алгоритма

Алгоритм производит моделирование действия однокубитного квантового вентиля на вектор-состояние.


1.2 Математическое описание

Исходные данные:

Целочисленные параметры [math]n - [/math] число кубитов (необязательно) и [math]k -[/math] номер кубита, над которым производится преобразование.

Комплексная матрица [math]U = \begin{pmatrix} u_{00} & u_{01}\\ u_{10} & u_{11} \end{pmatrix}[/math] однокубитного преобразования размера [math]2 \times 2.[/math]

Комплексный вектор [math]v[/math] размерности [math]2^n,[/math] задающей начальное состояние многокубитной системы.


Вычисляемые данные: комплексный вектор [math]w[/math] размерности [math]2^n,[/math] соответствующий состоянию после преобразования.


Формулы метода:

Состояние после действия преобразования [math]U[/math] на [math]k-[/math]й кубит имеет вид [math]v_{out} = I_{2^{k-1}}\otimes U \otimes I_{2^{n-k}},[/math] где [math]I_{j} - [/math] единичная матрица размерности [math]j,[/math] а [math]\otimes - [/math] тензорное произведение (произведение Кронекера).

Однако, элементы итогового вектора можно записать и в прямом виде, что более удобно для вычислений:

[math] w_{i_1i_2\ldots i_k \ldots i_n} = \sum\limits_{j_k=0}^1 u_{i_k j} v_{i_1i_2\ldots j_k \ldots i_n} = u_{i_k 0} v_{i_1i_2\ldots 0_k \ldots i_n} + u_{i_k 1} v_{i_1i_2\ldots 1_k \ldots i_n} [/math]

Индекс-кортеж [math]i_1i_2\ldots i_n[/math] представляет собой двоичную запись индекса элемента в массиве.


1.3 Вычислительное ядро алгоритма

Вычислительное ядро алгоритма представляет собой независимое вычисление всех [math]2^n[/math] элементов вектора [math]w.[/math] Вычисление каждого элемента требует две операции умножения и одну операцию сложения. Кроме того необходимо вычислять индексы типа [math]i_1i_2\ldots 0_k \ldots i_n,[/math] а также значение бита [math]i_k,[/math] что требует побитовых операций.

1.4 Макроструктура алгоритма

Как записано и в описании ядра алгоритма, основную часть метода составляют независимые вычсиления элементов выходного вектора.

1.5 Описание схемы реализации последовательного алгоритма

1.6 Информационный граф

1.7 Описание ресурса параллелизма алгоритма

1.8 Описание входных и выходных данных

1.9 Свойства алгоритма

2 Программная реализация

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.2.1 Описание локальности алгоритма

2.2.2 Описание локальности реализации алгоритма

2.2.2.1 Описание структуры обращений в память и качественная оценка локальности

3 Литература