Участник:Tereshinvs/MST Clusterization: различия между версиями
Строка 23: | Строка 23: | ||
В данной статье рассматривается версия алгоритма с использованием алгоритма Борувки. | В данной статье рассматривается версия алгоритма с использованием алгоритма Борувки. | ||
− | В случае постановки задачи в виде набора признаков в подходящем метрическом пространстве возможна также предварительная подготовка графа, состоящая из построения триангуляции Делонэ. Так как любое минимальное остовное дерево в этом случае принадлежит триангуляции Делоне, это позволяет значительно улучшить ассимптотику алгоритма. | + | В случае постановки задачи в виде набора признаков в подходящем метрическом пространстве возможна также предварительная подготовка графа, состоящая из построения триангуляции Делонэ. Так как любое минимальное остовное дерево в этом случае принадлежит триангуляции Делоне, в некоторых случаях это позволяет значительно улучшить ассимптотику алгоритма. |
=== Математическое описание алгоритма === | === Математическое описание алгоритма === | ||
Строка 31: | Строка 31: | ||
=== Последовательная сложность алгоритма === | === Последовательная сложность алгоритма === | ||
# Для построения триангуляции Делонэ существуют алгоритмы разделяй-и-властвуй, имеющие гарантированную сложность <math>O(N \log N)</math>. Кроме того, если имеется некоторая априорная информация о рассматриваемых объектах, в некоторых случаях имеются алгоритмы со средней сложностью <math>O(N)</math>; | # Для построения триангуляции Делонэ существуют алгоритмы разделяй-и-властвуй, имеющие гарантированную сложность <math>O(N \log N)</math>. Кроме того, если имеется некоторая априорная информация о рассматриваемых объектах, в некоторых случаях имеются алгоритмы со средней сложностью <math>O(N)</math>; | ||
− | # Алгоритм Борувки в общем имеет <math>O(\log N)</math> шагов, а каждый шаг требует <math>O(V)</math> операций, где <math>V</math> -- число рёбер в графе. Итого <math>O(V \log N)</math> операций. | + | # Алгоритм Борувки в общем имеет <math>O(\log N)</math> шагов, а каждый шаг требует <math>O(V)</math> операций, где <math>V</math> -- число рёбер в графе. Итого <math>O(V \log N)</math> операций. При использовании триангуляции Делонэ <math>V</math> имеет тот же порядок, что и <math>N</math>, поэтому общая сложность <math>O(N \log N)</math>. В общем же случае сложность составляет <math>O(N^2 \log N)</math> |
+ | # Удаление <math>K-1</math> можно осуществить за <math>O(N)</math> операций. | ||
+ | |||
+ | Итак, общая сложность алгоритма в общем случае <math>O(N^2 \log N)</math>. | ||
=== Информационный граф === | === Информационный граф === | ||
=== Ресурс параллелизма алгоритма === | === Ресурс параллелизма алгоритма === |
Версия 12:49, 15 октября 2016
Содержание
- 1 Структура и свойства алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Структура и свойства алгоритма
1.1 Общее описание алгоритма
Кластеризация -- это задача статистического анализа, состоящая в разбиении множества объектов на группы, называемые кластерами, внутри которых объекты обладают похожими свойствами (чаще всего, это означает близость относительно заданной метрики). Изначально группы неизвестны, в зависимости от постановки задачи может быть также известно или неизвестно общее число кластеров.
Спектр применений кластерного анализа очень широк: его используют в археологии, медицине, психологии, химии, биологии, государственном управлении, филологии, антропологии, маркетинге, социологии и других дисциплинах.
Постановка задачи также может различаться характером входных данных:
- Набор признаков [math] \left\{ v_1, v_2, \ldots, v_N \right\} [/math] в некотором метрическом пространстве с метрикой [math] \rho(x, y) [/math]
- Матрица отношений между объектами: симметричная матрица вещественных чисел размером [math] N \times N [/math] с неотрицательными элементами с нулевой диагональю.
В данной статье рассматривается постановка с известным количеством кластеров [math] K [/math].
Алгоритмы кластеризации делятся на два вида: иерархические и неиерархические. Иерархические алгоритмы строят большие кластеры из меньших или разделяют большие на меньшие, а неиерархические заключаются в минимизации некоторой функции. Примерами неиерархических алгоритмов являются алгоритм k-средних, PAM, CLOPE, LargeItem и т.д., а иерархических -- CURE, ROCK, Chameleon, BIRCH и рассматриваемый в данной статье алгоритм MST (Minimum spanning tree -- минимальное остовное дерево).
Минимальное остовное дерево (или минимальное покрывающее дерево) в связанном взвешенном неориентированном графе -- это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.
Общая схема алгоритма:
- Построение минимального остовного дерева одним из известных методов (алгоритмы Крускала, Прима, Борувки и их комбинации; наиболее пригодным для параллельного исполнения считается алгоритм Борувки)
- Удаление [math] K-1 [/math] самых длинных рёбер из минимального остовного дерева.
В данной статье рассматривается версия алгоритма с использованием алгоритма Борувки.
В случае постановки задачи в виде набора признаков в подходящем метрическом пространстве возможна также предварительная подготовка графа, состоящая из построения триангуляции Делонэ. Так как любое минимальное остовное дерево в этом случае принадлежит триангуляции Делоне, в некоторых случаях это позволяет значительно улучшить ассимптотику алгоритма.
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
- Для построения триангуляции Делонэ существуют алгоритмы разделяй-и-властвуй, имеющие гарантированную сложность [math]O(N \log N)[/math]. Кроме того, если имеется некоторая априорная информация о рассматриваемых объектах, в некоторых случаях имеются алгоритмы со средней сложностью [math]O(N)[/math];
- Алгоритм Борувки в общем имеет [math]O(\log N)[/math] шагов, а каждый шаг требует [math]O(V)[/math] операций, где [math]V[/math] -- число рёбер в графе. Итого [math]O(V \log N)[/math] операций. При использовании триангуляции Делонэ [math]V[/math] имеет тот же порядок, что и [math]N[/math], поэтому общая сложность [math]O(N \log N)[/math]. В общем же случае сложность составляет [math]O(N^2 \log N)[/math]
- Удаление [math]K-1[/math] можно осуществить за [math]O(N)[/math] операций.
Итак, общая сложность алгоритма в общем случае [math]O(N^2 \log N)[/math].
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
Входными данными являются число [math] N [/math] (количество элементов рассматриваемого множества) и матрица вещественных чисел размера [math] N \times N [/math] отношений между элементами этого множества. Матрица предполагается симметричной, а её диагональные элементы равными нулю, поэтому её размер можно оценить как [math] \tfrac{N(N-1)}{2} [/math].
Кроме того, имеется натуральное число [math] K \leqslant N [/math] -- требуемое количество кластеров.
Выходными данными являются [math] N [/math] натуральных чисел от [math] 1 [/math] до [math] K [/math] -- номера кластеров, в которые определена каждая вершина. При этом, каждый кластер содержит хотя бы одну вершину.
1.10 Свойства алгоритма
Чувствителен к выбросам
2 Программная реализация алгоритма
2.1 Масштабируемость алгоритма и его реализации
2.2 Существующие реализации алгоритма
3 Литература
- Euclidean minimum spanning tree, https://en.wikipedia.org/wiki/Euclidean_minimum_spanning_tree
- Нейский И.М. Классификация и сравнение методов кластеризации, http://it-claim.ru/Persons/Neyskiy/Article2_Neiskiy.pdf