Алгоритм DCSC поиска компонент сильной связности

Материал из Алговики
Перейти к навигации Перейти к поиску

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм DCSC[1][2][3] (англ. Divide and Conquer Strong Components – компоненты сильной связности по принципу «Разделяй и властвуй») находит компоненты сильной связности ориентированного графа с ожидаемой работой [math]O(n \ln n)[/math] (при условии ограниченной степени вершин).

Алгоритм изначально предназначен для параллельной реализации: на каждом шаге он находит одну компоненту сильной связности и выделяет до трёх подмножеств графа, которые содержат другие компоненты связности и могут обрабатываться параллельно. Алгоритм не подходит для графов, в которых имеется малое число компонент сильной связности, так как ход исполнения алгоритма в этом случае фактически является последовательным.

Основной операцией является поиск вершин, достижимых из данной в прямом или обратном направлении. Эта операция реализуется параллельным поиском в ширину. Следует отметить, что в данном случае не требуется синхронизации между итерациями поиска в ширину, поскольку требуется только определить достижимые вершины, но не расстояния до них

1.2 Математическое описание алгоритма

Пусть [math]v[/math] – некоторая вершина графа. Определим следующие множества вершин:

[math]Fwd(v)[/math] – вершины, достижимые из [math]v[/math] .

[math]Pred(v)[/math] – вершины, из которых достижима [math]v[/math] (эквивалентно – вершины, достижимые из [math]v[/math] в графе, полученном из [math]G[/math] обращением всех рёбер).

Используя эти множества, разобьём все вершины графа на четыре области:

[math]V_1 = Fwd(v) \cap Pred(v) [/math]

[math]V_2 = Fwd(v) \setminus Pred(v) [/math]

[math]V_3 = Pred(v) \setminus Fwd(v)[/math]

[math]V_4 = V \setminus Pred(v) \setminus Fwd(v)[/math]

Тогда можно утверждать следующее:

1. Область [math]V_1[/math] является компонентой сильной связности.

2. Любая другая компонента сильной связности полностью содержится в одной из областей [math]V_2[/math], [math]V_3[/math], или [math]V_4[/math].

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

Алгоритм DCSC состоит в следующем:

1. Поместить в очередь множество [math]V[/math].

2. Параллельно обрабатывать очередь. Для каждого элемента очереди [math]V[/math]:

а) Выбрать произвольную ведущую вершину [math]v \in V[/math].

б) Вычислить множества [math]Fwd(v)[/math], [math]Pred(v)[/math] (эти два вычисления можно производить параллельно, кроме того, как указано выше, сами эти вычисления хорошо параллелизуются).

в) Добавить множество [math] V_1[/math] в список компонент сильной связности.

г) Добавить множества [math] V_2[/math], [math]V_3[/math] и [math]V_4[/math] в очередь.

3. Алгоритм завершает работу, когда очередь пуста и не осталось активных процессов-обработчиков.

Для улучшения балансировки нагрузки на первых шагах можно выбирать не одну ведущую вершину, а сразу несколько. Тогда, если они принадлежат различным компонентам связности, граф будет сразу разбит на большое количество областей, которые будут далее обрабатываться параллельно.

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

Ожидаемая последовательная сложность алгоритма составляет [math]O(n \ln n)[/math] при условии, что степень вершин ограничена сверху константой.

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

Алгоритм изначально предназначен для параллельной реализации: на каждом шаге он находит одну компоненту сильной связности и выделяет до трёх подмножеств графа, которые содержат другие компоненты связности и могут обрабатываться параллельно. Алгоритм не подходит для графов, в которых имеется малое число компонент сильной связности, так как ход исполнения алгоритма в этом случае фактически является последовательным.

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.2.1 Локальность реализации алгоритма

2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

2.4.2 Масштабируемость реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Fleischer, Lisa K, Bruce Hendrickson, and Ali Pınar. “On Identifying Strongly Connected Components in Parallel.” In Lecture Notes in Computer Science, Volume 1800, Springer, 2000, pp. 505–11. doi:10.1007/3-540-45591-4_68.
  2. McLendon, William, III, Bruce Hendrickson, Steven J Plimpton, and Lawrence Rauchwerger. “Finding Strongly Connected Components in Distributed Graphs.” Journal of Parallel and Distributed Computing 65, no. 8 (August 2005): 901–10. doi:10.1016/j.jpdc.2005.03.007.
  3. Hong, Sungpack, Nicole C Rodia, and Kunle Olukotun. “On Fast Parallel Detection of Strongly Connected Components (SCC) in Small-World Graphs,” Proceeedings of SC'13, 1–11, New York, New York, USA: ACM Press, 2013. doi:10.1145/2503210.2503246.