Уровень алгоритма

Блочная прогонка

Материал из Алговики
Перейти к навигации Перейти к поиску


Прогонка для трёхдиагональной матрицы,
точечный вариант
Последовательный алгоритм
Последовательная сложность [math]8n-7[/math]
Объём входных данных [math]4n-2[/math]
Объём выходных данных [math]n[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]3n-2[/math]
Ширина ярусно-параллельной формы [math]2[/math]


Основные авторы описания: А.В.Фролов

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Блочная прогонка - один из вариантов метода исключения неизвестных в приложении к решению блочно-трёхдиагональной СЛАУ[1][2] вида [math]Ax = b[/math], где

[math] A = \begin{bmatrix} A_{11} & A_{12} & 0 & \cdots & \cdots & 0 \\ A_{21} & A_{22} & A_{23}& \cdots & \cdots & 0 \\ 0 & A_{32} & A_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & A_{n-1 n-2} & A_{n-1 n-1} & A_{n-1 n} \\ 0 & \cdots & \cdots & 0 & A_{n n-1} & A_{n n} \\ \end{bmatrix}, x = \begin{bmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \\ \end{bmatrix}, b = \begin{bmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{n} \\ \end{bmatrix} [/math]

Часто, однако, при изложении сути метода блочной прогонки[3] блоки правой части и матрицы системы обозначают и нумеруют по-другому, например СЛАУ может иметь вид ([math]N=n+1[/math])

[math] A = \begin{bmatrix} C_{0} & -B_{0} & 0 & \cdots & \cdots & 0 \\ -A_{1} & C_{1} & -B_{1} & \cdots & \cdots & 0 \\ 0 & -A_{2} & C_{2} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & -A_{N-1} & C_{N-1} & -B_{N-1} \\ 0 & \cdots & \cdots & 0 & -A_{N} & C_{N} \\ \end{bmatrix}\begin{bmatrix} Y_{0} \\ Y_{1} \\ \vdots \\ Y_{N} \\ \end{bmatrix} = \begin{bmatrix} F_{0} \\ F_{1} \\ \vdots \\ F_{N} \\ \end{bmatrix} [/math]

или, если записывать отдельно по блочным уравнениям, то

[math] C_{0} Y_{0} - B_{0} Y_{1} = F_{0},\\ -A_{i} Y_{i-1} + C_{i} Y_{i} - B_{i} Y_{i+1} = F_{i}, 1 \le i \le N-1, \\ -A_{N} Y_{N-1} + C_{N} Y_{N} = F_{N} [/math]

Суть метода - в исключении из уравнений неизвестных, сначала - сверху вниз - под диагональю, а потом - снизу вверх - над диагональю.

Рисунок 1. Граф алгоритма при n=8 без отображения входных и выходных данных. / - операция [math]X^{-1}Y[/math], f - операция [math]A+BC[/math] или [math]A-BC[/math].

1.2 Математическое описание алгоритма

В приведённых обозначениях в прогонке сначала выполняют её прямой ход - вычисляют матричные коэффициенты

[math] \boldsymbol{\alpha}_{1} = C_{0}^{-1} B_{0},\\ \boldsymbol{\beta}_{1} = C_{0}^{-1} F_{0}, \\ \boldsymbol{\alpha}_{i+1} = (C_{i}-A_{i}\boldsymbol{\alpha}_{i})^{-1} B_{i}, \quad i = 1, 2, \cdots , N-1, \\ \boldsymbol{\beta}_{i+1} = (C_{i}-A_{i}\boldsymbol{\alpha}_{i})^{-1}(F_{i}+A_{i}\boldsymbol{\beta}_{i}), \quad i = 1, 2, \cdots , N. [/math]

после чего вычисляют решение с помощью обратного хода

[math] Y_{N} = \boldsymbol{\beta}_{N+1}, \\ Y_{i} = \boldsymbol{\alpha}_{i+1} Y_{i+1} + \boldsymbol{\beta}_{i+1}, \quad i = N-1, N-2, \cdots , 1, 0. [/math]

Данные формулы эквиваленты вычислению одного из блочных [math]LU[/math]-разложений матрицы системы с последующим решением блочно-двухдиагональных систем методом обратной подстановки.

1.3 Вычислительное ядро алгоритма

Вычислительное ядро алгоритма можно представить из двух частей - прямого и обратного хода. В прямом ходе ядро составляют последовательности операций умножения обратной к одной матрице на другую, умножения и сложения/вычитания матриц и векторов. В обратном ходе в ядре остаются только последовательности умножения и сложения матриц и векторов.

1.4 Макроструктура алгоритма

Кроме представления макроструктуры алгоритма как совокупности прямого и обратного хода, прямой ход также может быть разложен на две макроединицы - разложения матрицы и прямого хода решения двухдиагональной СЛАУ, которые выполняются "одновременно", т.е., параллельно друг другу. При этом решение двухдиагональной СЛАУ использует результаты разложения.

1.5 Схема реализации последовательного алгоритма

Последовательность исполнения метода следующая:

1. Инициализируется прямой ход прогонки:

[math] \boldsymbol{\alpha}_{1} = C_{0}^{-1} B_{0},\\ \boldsymbol{\beta}_{1} = C_{0}^{-1} F_{0}, \\ [/math]

2. Последовательно для всех i от 1 до N-1 выполняются формулы прямого хода:

[math] \boldsymbol{\alpha}_{i+1} = (C_{i}-A_{i}\boldsymbol{\alpha}_{i})^{-1} B_{i}, \\ \boldsymbol{\beta}_{i+1} = (C_{i}-A_{i}\boldsymbol{\alpha}_{i})^{-1}(F_{i}+A_{i}\boldsymbol{\beta}_{i}). [/math]

3. Инициализируется обратный ход прогонки:

[math] Y_{N} = (C_{N}-A_{N}\boldsymbol{\alpha}_{N})^{-1}(F_{N}+A_{N}\boldsymbol{\beta}_{N}) [/math]

4. Последовательно для всех i с убыванием от N-1 до 0 выполняются формулы обратного хода:

[math] Y_{i} = \boldsymbol{\alpha}_{i+1} Y_{i+1} + \boldsymbol{\beta}_{i+1}. [/math]

1.6 Последовательная сложность алгоритма

Для выполнения прогонки в трёхдиагональной СЛАУ из n уравнений с n неизвестными в последовательном (наиболее быстром) варианте требуется:

  • [math]2n-1[/math] делений,
  • [math]3n-3[/math] сложений/вычитаний,
  • [math]3n-3[/math] умножений.

При классификации по последовательной сложности, таким образом, прогонка относится к алгоритмам с линейной сложностью.

1.7 Информационный граф

Информационный макрограф прогонки изображён на рис.1. Как видно, в терминах макроопераций он почти последователен: при выполнении прямого хода две ветви (левая - блочное разложение матрицы, центральная - решение первой из блочно-двухдиагональных систем) могут выполняться параллельно друг другу. Правая ветвь соответствует обратному ходу. По рисунку видно, что не только математическая суть обработки элементов векторов, но даже структура макрографа алгоритма и направление потоков данных в нём вполне соответствуют названию "обратный ход".

1.8 Описание ресурса параллелизма алгоритма

Для выполнения прогонки в трёхдиагональной СЛАУ из n уравнений с n неизвестными в параллельном варианте требуется последовательно выполнить следующие макроярусы:

  • [math]n[/math] ярусов умножения матрицы, обратной к одной, на другую или на вектор (в каждом из ярусов, кроме одного, по 2 деления),
  • по [math]2n - 2[/math] ярусов умножений и сложений/вычитаний мариц и векторов (в n-1 ярусах - по 2 операции, в n-1 - по одной).

При классификации по высоте ЯПФ, таким образом, прогонка относится к алгоритмам с макросложностью [math]O(n)[/math]. При классификации по ширине ЯПФ его макросложность будет [math]2[/math].

1.9 Входные и выходные данные алгоритма

Входные данные: блочно-трёхдиагональная матрица [math]A[/math] (блоки [math]A_{ij}[/math]), вектор [math]B[/math] (блоки [math]B_{i}[/math]).

Выходные данные: вектор [math]X[/math] (блоки [math]Х_{i}[/math]).

Объём выходных данных: [math]n[/math] блоков.

1.10 Свойства алгоритма

Соотношение последовательной и параллельной макросложности, как хорошо видно, является константой (причём менее 2).

При этом вычислительная мощность алгоритма, как отношение числа макроопераций к суммарному объему входных и выходных макроданных – тоже константа.

Алгоритм полностью детерминирован.

Обычно прогонка используется для решения СЛАУ с диагональным преобладанием. Тогда гарантируется устойчивость алгоритма. В случае, когда требуется решение нескольких СЛАУ с одной и той же матрицей, левую ветвь вычислений (см. рисунок с графом алгоритма) можно не повторять. Это связано с тем, что блочное [math]LU[/math]-разложение матрицы системы не нужно перевычислять.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

В зависимости от нужд вычислений, возможны как разные способы хранения матрицы СЛАУ (в виде одного массива с 3 строками или в виде 3 разных массивов), так и разные способы хранения вычисляемых коэффициентов (на месте использованных уже элементов матрицы либо отдельно).

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
  2. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.
  3. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.