Методы QR-разложения плотных хессенберговых матриц
Версия от 17:10, 16 марта 2018; ASA (обсуждение | вклад)
Задача QR-разложения плотных хессенберговых матриц встречается в качестве этапа одной итерации QR-алгоритма. Однако для современных вариантов QR-алгоритма её решают неявно, используя то, что на итерации затем нужно выполнить так же неявно умножение RQ. При этом, в зависимости от выбора сдвига, используются как схема с неявным одиночным сдвигом, опирающаяся на метод Гивенса, так и схема с неявным двойным сдвигом, опирающаяся на метод Хаусхолдера.