Участник:JuliaA/Алгоритм кластеризации с использованием представлений
Основные авторы описания: Ю.А. Антохина, С.А. Шатков
Содержание
- 1 ЧАСТЬ. Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 ЧАСТЬ. Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 ЧАСТЬ. Свойства и структура алгоритмов
1.1 Общее описание алгоритма
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Максимальное время выполнения алгоритма [math]O(n^2 logn)[/math]. Для двумерного пространства временная сложность может быть [math]O(n^2)[/math]. Так что сложность алгоритма не хуже чем у центроидного. То есть при такой размерности входных данных CURE выполняется за полиномиальное время.
(ПОЯСНЕНИЯ, ЕСЛИ ЕСТЬ ВРЕМЯ)
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
Алгоритм CURE выполняет иерархическую кластеризацию с использованием набора определяющих точек. Он действует только в евклидовом пространстве и предназначен для кластеризации очень больших наборов числовых данных.
Преимущества: выполняет кластеризацию на высоком уровне даже при наличии выбросов, выделяет кластеры сложной формы и различных размеров, обладает линейно зависимыми требованиями к месту хранения данных и квадратичную временную сложность для данных высокой размерности.
Недостатки: есть необходимость в задании пороговых значений и количества кластеров, работает только на числовых данных, эффективен только для данных низкой размерности
2 ЧАСТЬ. Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
Данный раздел будет заполнен к 15 ноября.
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
Последовательная реализация CURE-алгоритма для кластеризации для Python/C++ представлена в пакете: pyclustering.
Также существует параллельная реализация алгоритма, описанная в сборнике [3]. (ДОБАВИТЬ: ЧТО ПРЕДЛАГАЮТ СДЕЛАТЬ АВТОРЫ)
3 Литература
[1] Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. - СПб.: БХВ-Петербург, 2002. - 608 с.
[2] Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. CURE: an efficient clustering algorithm for large databases. SIGMOD '98 Proceedings of the 1998 ACM SIGMOD international conference on Management of data, pp 73-84
[3] Panagiotis E. Hadjidoukas, Laurent Amsaleg. OpenMP Shared Memory Parallel Programming. Volume 4315 of the series Lecture Notes in Computer Science pp 289-299 Parallelization of a Hierarchical Data Clustering Algorithm Using OpenMP