Участник:Арутюнов А.В.
Версия от 17:34, 15 октября 2016; Арутюнов А.В. (обсуждение | вклад) (Новая страница: « {{algorithm | name = Решение системы нелинейных уравнений методом Ньютона | serial_complexity = <math…»)
Решение системы нелинейных уравнений методом Ньютона | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(n^2 [/math] - одна итерация |
Объём входных данных | [math]n * m + 1[/math] |
Объём выходных данных | [math]n[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math][/math] |
Ширина ярусно-параллельной формы | [math][/math] |
Автор описания: Арутюнов А.В.
Решение системы нелинейных уравнений методом Ньютона
Содержание
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
это итерационный численный метод нахождения корня (нуля) заданной функции
Классический метод Ньютона или касательных заключается в том, что если [math]x_n[/math] — некоторое приближение к корню [math]x_*[/math] уравнения f(x) = 0, f(x) ghby [math]C^1[/math] , то следующее приближение определяется как корень касательной f(x) к функции , проведенной в точке [math]x_n[/math] .
равнение касательной к функции f(x) в точке имеет вид:
[math]f^(x_j)=y-f(x_n)/(x-x_n)[/math]
В уравнении касательной положим y=0 и [math]x=x_n+1[/math].
Тогда алгоритм последовательных вычислений в методе Ньютона состоит в следующем: