Участник:ArtyomKhakimov/Алгоритм Ланцоша для арифметики с плавающей точкой с выборочной ортогонализацией

Материал из Алговики
Перейти к навигации Перейти к поиску
Symbol wait.svgЭта работа ждет рассмотрения преподавателем
Дата последней правки страницы:
19.01.2017
Авторы этой статьи считают, что задание выполнено.

Авторы: Хакимов А. С.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Ланцоша служит для нахождения собственных значений и собственных векторов для больших разреженных матриц, к которым нельзя применить прямые методы из-за больших требований к памяти и времени. Он был опубликован Корнелием Ланцошем в 1950 году. Его эффективность обусловлена экономией памяти для хранения матриц и экономией вычислительных ресурсов. Алгоритм итерационный и использует степенной метод для поиска наибольших собственных значений и векторов матриц. Основной недостаток алгоритма заключается в накоплении ошибок округления, для решения которых появились методы поддержания ортогонализации т.н. векторов Ланцоша. Здесь мы рассмотрим выборочный метод поддержания ортогонализации, который существенно экономит процессорное время.


На вход алгоритма подаётся [math]A = A^T[/math],


[math] A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1\ n-1} & a_{1\ n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2\ n-1} & a_{2\ n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3\ n-1} & a_{3\ n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1\ n-1} & \cdots & \cdots & a_{n-2\ n-1} & a_{n-1\ n-1} & a_{n-1\ n} \\ a_{1\ n} & \cdots & \cdots & a_{n-2\ n} & a_{n-1\ n} & a_{n\ n} \\ \end{pmatrix} [/math] [math] ,\, \;[/math]


случайный вектор [math]b[/math], как первое приближение собственного вектора матрицы и [math]k [/math] - количество собственных значений и собственных векторов, которые требуется найти.

Матрица [math]Q_j = [q_1, q_2, \dots, q_j][/math] размерности [math]n \times j[/math] строится на каждой итерации и состоит из ортонормированных векторов Ланцоша. А в качестве приближенных собственных значений берутся числа Ритца [math]\theta_i [/math], - собственные значения симметричной трехдиагональной матрицы [math]T_j = Q^T_j A Q_j[/math] размерности [math]j \times j[/math].

[math] T_j = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{j-1} \\ & & & \beta_{j-1} & \alpha_j \end{pmatrix}\; (2). [/math]


Однако, векторы [math]q_j [/math] теряют ортогональность вследствие приобретения больших компонент в направлениях векторов Ритца [math]y_{i,j} = Q_j v_i [/math], отвечающих сошедшимся числам Ритца [math] \theta_i [/math]. Поэтому чтобы построить [math]q_j [/math], предлагается на каждом шаге следить за оценками погрешностей [math]\beta_{t}|v_i(t)|, i = 1 \dots t, t = j - 1 [/math], где [math]v_i(t) [/math] - [math]t[/math]-я компонента собственного вектора [math]v_i [/math]. И когда какая-то оценка становится слишком малой, проводить ортогонализацию вектора Ланцоша [math]z [/math]. Величина [math]\beta_{t}|v_i(t)| [/math] считается малой, если она меньше, чем [math]\sqrt{\varepsilon}||T_{t}|| [/math], где [math]\varepsilon[/math] - доступная машинная точность чисел.

После следует вычисление собственных значений [math] \theta_j [/math] и собственных векторов [math]v_j [/math] полученной трехдиагональной матрицы [math]T_j[/math], например, с помощью метода "разделяй и властвуй"[1]

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

  • Умножение матрицы на вектор, [math]z=Aq_j, [/math].
  • Ортогонализация по отношению к сошедшимся векторам [math]z = z-(y^T_{i,k},z)y_{i,k} [/math] для [math]i = 1 \dots t[/math]

1.4 Макроструктура алгоритма

  1. Дж. Деммель «Вычислительная линейная алгебра», c. 232, алгоритм 5.2