Участник:Dmitry/Плотностный алгоритм кластеризации

Материал из Алговики
Перейти к навигации Перейти к поиску

Авторы описания: Титов Д.Е.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Под кластеризацией понимается деление заданного множества точек данных (объектов) на подгруппы, каждая из которых, насколько это возможно, однородна. В основе метода кластеризации DBSCAN лежит объединение некоторых объектов в соответствии с их внутригрупповым «соединением». Для проведения корректной процедуры кластеризации необходимо указать критерии, по которым объекты будут объединены в кластеры. Прежде всего, необходимо сказать, что кластеры представляют собой плотные области некоторых объектов в пространстве данных, разделенных между собой объектами, плотность которых значительно ниже. Расположение точек в одном кластере обусловлено их соединением, т.е. некоторой связью между собой.

1.2 Математическое описание алгоритма

Плотность точек для данной точки [math]X[/math] определяется двумя параметрами. Первым из них является [math]\varepsilon[/math] – радиус «соседства» (приближенности) точки [math]X[/math]. Тогда множество [math]M_\varepsilon(X)[/math] будет включать в себя такие точки [math]f_i[/math], [math](i=\overline{1,n})[/math], для которых следующее неравенство будет истинно:

[math]dist(X,f_i) \le \varepsilon[/math], [math](i=\overline{1,n})[/math]

Функция [math]dist(var1, var2)[/math] определяет расстояние между объектами выборки [math]D[/math]. Это расстояние может вычисляться различными способами, например, как евклидово расстояние или с помощью метрики Минковского.

Вторым параметром определения плотности точек является [math]MCP[/math] – это минимальное количество точек, которые расположены ближе всего к данной точке согласно определенному радиусу [math]\varepsilon[/math].

Точка [math]f_i[/math], [math](i=\overline{1,n})[/math] будет являться окруженной точкой (согласно [math]\varepsilon[/math] и [math]MCP[/math]) если:

[math]M_\varepsilon(X) \le MPC[/math]

Это значит, что точка [math]f_i[/math], [math](i=\overline{1,n})[/math] окруженная, если количество «соседствующих» точек выборки [math]D[/math] окажется большим, либо равным значению параметра [math]MCP[/math] (рис. 1).

Рис. 1. Окруженная точка при MPC = 5

Точка [math]X[/math] является прямо достижимой по плотности от точки [math]f[/math] (при соответствующих [math]\varepsilon[/math] и [math]MPC[/math]), если точка [math]X \in M(X)[/math], т.е. точка [math]X[/math] – это одна из точек [math]f[/math] для другого окружения (соседства), где [math]f[/math] – окруженная точка (рис. 2).

Рис. 2. Точка X прямо достижима по плотности от точки f

Достижимость по плотности – это транзитивное замыкание прямо достижимой по плотности точки. Точка [math]f[/math] достижима по плотности из точки [math]X[/math], но точка [math]X[/math] не достижима по плотности из точки [math]f[/math] (рис. 3).

Рис. 3. Достижимость по плотности

Точка [math]X[/math] соединена (связана) по плотности с точкой [math]f[/math] (согласно [math]\varepsilon[/math] и [math]MCP[/math]) если существует точка [math]e[/math] такая, что обе точки [math]X[/math] и [math]f[/math] являются достижимыми от точки [math]e[/math] (согласно [math]\varepsilon[/math] и [math]MCP[/math]) (рис. 4).

Рис. 4. Соединение по плотности

Кластер, сформированный на основе размещения объектов по плотности должен удовлетворять таким свойствам: максимальность; связность.

В этом случае, под кластером понимается непустое подмножество точек [math]G[/math] из набора данных [math]D[/math], которое удовлетворяет вышеупомянутым свойствам, причем, максимальность интерпретируется таким образом: если [math]X \in G[/math] и [math]f[/math] достижима по плотности от точки [math]X[/math], тогда и [math]f \in G[/math], это значит, что обе точки принадлежат одному кластеру.

Свойство связности гласит, что каждый объект в подмножестве [math]G[/math] соединен по плотности со всеми объектами кластера (при заданных [math]\varepsilon[/math] и [math]MCP[/math]).

Все объекты из набора данных [math]D[/math] представляют собой совокупность подмножеств:

[math]D= \{ G_1, G_2,..., G_n, N \}[/math],

где [math]G_1, G_2,..., G_n[/math] – кластеры, образованные по плотности; [math]N[/math] – некоторое подмножество, объекты которого не принадлежат ни одному из подмножеств [math]G_1, G_2,..., G_n[/math].

1.3 Вычислительное ядро алгоритма

Вычислительным ядром алгоритма является поиск всех "соседствующих" точек для каждой точки [math]X[/math] входного множества [math]D[/math]. Основное время работы алгоритма используется на функцию [math]dist(var1, var2)[/math], определяющую расстояние между объектами выборки [math]D[/math] и сравнение расстояния с заданной [math]\varepsilon[/math] для того, чтобы определить "соседствующие" точки.

1.4 Макроструктура алгоритма

Вычисление расстояния между двумя объектами из выборки [math]D[/math] осуществляется при помощи различных метрик. В большинстве случаев вычисляется метрика Евклида: [math]dist(u,v)=\sqrt{(u_1-v_1)^2+(u_2-v_2)^2+...+(u_n-v_n)^2} = \sqrt{\sum_{k=1}^n(u_k-v_k)^2}.[/math]

Также возможно использование метрики Минковского, что является обобщением евклидова расстояния:

[math]dist(x,y) = \left(\sum_{i=1}^n |x_i-y_i|^p\right)^{1/p}[/math].

1.5 Схема реализации последовательного алгоритма

Реализация алгоритма DBSCAN может быть разделена на два этапа. В первую очередь из всего набора данных [math]D[/math] необходимо выделить те точки, которые являются окруженными. Затем выполнять следующую процедуру: для каждого объекта [math]X[/math] из набора данных [math]D[/math] определить:

1) принадлежит ли текущий объект к какому-нибудь из кластеров;

2) является ли текущий объект окруженной точкой.

Если текущий объект – окруженная точка, то все объекты, достижимые по плотности от текущего объекта, соединяем в новый кластер. В противном случае, если объект не является окруженной точкой и не достижим по плотности ни от какого объекта, то текущий объект – выброс. Псевдокод алгоритма DBSCAN можно представить следующим образом:

for [math]\forall X \in D[/math]
  [math]\{[/math]
    if [math] (X \in G_i, i= \overline{1,n})[/math]
    [math]\{[/math]
       if [math] (X_i \in M_\varepsilon(X))[/math]
       [math]\{[/math]
         find [math]X_i \in D[/math] достижимы по плотности
         from [math]X_i \in M_\varepsilon(X)[/math]
       [math]\}[/math]
       else if [math] (X_i \notin M_\varepsilon(X)[/math] and [math]X[/math] не достижим от любого другого объекта [math])[/math]
       [math]\{[/math]
         [math]X \in N[/math]
       [math]\}[/math]
 [math]\}[/math]

параметры [math]\varepsilon[/math] и [math]MCP[/math] задаются пользователем.

1.6 Последовательная сложность алгоритма

Сложность алгоритма зависит от поиска всех точек в [math]\varepsilon[/math]-окрестности конкретной точки [math]X[/math] из выборки [math]D[/math]. Из-за поиска "соседствующих" точек алгоритм имеет квадратичную вычислительную сложность [math]O(n^2)[/math] (где n - количество точек). Но если использовать K-мерное дерево, то можно снизить сложность до [math]O(\text{n log n})[/math].

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература