Метод Хаусхолдера (отражений) QR-разложения матрицы
Версия от 16:52, 6 ноября 2017; Frolov (обсуждение | вклад)
Метод Хаусхолдера (в советской математической литературе чаще называется методом отражений) используется для разложения матриц в виде [math]A=QR[/math] ([math]Q[/math] - унитарная, [math]R[/math] — правая треугольная матрица)[1]. При этом матрица [math]Q[/math] хранится и используется не в своём явном виде, а в виде произведения матриц отражения[2].
Матрица отражений (Хаусхолдера) - матрица вида [math]U=E-2ww^*[/math], где [math]w[/math] - вектор, удовлетворяющий равенству [math]w^{*}w=1[/math]. Является одновременно унитарной ([math]U^{*}U=E[/math]) и эрмитовой ([math]U^{*}=U[/math]), поэтому обратна самой себе ([math]U^{-1}=U[/math]).
Кроме классического точечного варианта, метод имеет много других, например, блочный.