Алгоритм устойчивой кластеризации с иcпользованием связей
Алгоритм устойчивой кластеризации с иcпользованием связей | |
Последовательный алгоритм | |
Последовательная сложность | [math]...[/math] |
Объём входных данных | [math]...[/math] |
Объём выходных данных | [math]...[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]...[/math] |
Ширина ярусно-параллельной формы | [math]...[/math] |
Автор описания: В.А. Рулев.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Кластеризация (кластерный анализ) — задача разбиения заданной выборки объектов на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались. Каждый объект из выборки характеризуется рядом признаков, которые могут быть вещественными, целочисленными, категорийными (то есть принимающими значения из какого-либо множества) и другими. Множество значений, которые может принимать признак, называется доменом этого признака. Так, например, у объекта кошка может быть категорийный признак порода, доменом которого является множество [персидская, бенгальская, сфинкс, мейн-кун, ...].
Алгоритм устойчивой кластеризации с иcпользованием связей (robust clustering using links, ROCK) был предложен в 2000 году Sudipto Guha (Stanford University), Rajeev Rastogi (Bell Laboratories) и Kyuseok Shim (Bell Laboratories) [1] для кластеризации объектов с категорийными признаками.
Алгоритм устойчивой кластеризации с использованием связей предназначен для работы с объектами типа "транзакция" ("покупательская корзина"). Транзакция представляет собой множество товаров, приобретенных покупателем у поставщика. Каждому товару, который есть в наличии у поставщика, в транзакции соответствует отдельный признак, который принимает значение true, если товар присутствует в транзакции, и false, если товар в транзакции отсутствует.
1.2 Математическое описание алгоритма
В ходе кластеризации все имеющиеся транзакции [math]P=\{p_1,...,p_M\}[/math] должны быть разделены на [math]K[/math] непересекающихся подмножеств (кластеров) [math]C_1, ..., C_K[/math] таким образом, чтобы полученные кластеры максимизировали некоторую критериальную функцию [math]E(C_1, ..., C_K)[/math].
Будет называть две транзакции [math]p_1[/math] и [math]p_2[/math] соседями, если мера сходства этих транзакций больше некоторого заранее заданного порогового значения [math]\theta[/math], то есть
[math]sim(p_1,p_2)\lt \theta[/math]
В качестве меры сходства в алгоритме устойчивой кластеризации с использованием связей используется основанная на коэффициенте Жаккара мера сходства
[math]sim(p_1,p_2)=\frac{N(p_1 \cap p_2)}{N(p_1 \cup p_2)}[/math]
Количеством связей двух транзакций будем называть количество общих соседей этих транзакций, то есть
[math]links(p_1,p_2)=N \Big( \{ p \in P | sim(p_1,p) \lt \theta \} \cap \{ p \in P | sim(p_2,p) \lt \theta \} \Big)[/math]
В качестве критериальной функции используется функция вида:
[math]E(C_1,...,C_K)=\sum_{i=1}^{K}N(C_i) \ast \sum_{p_q,p_r \in C_i}\frac{link(p_q,p_r))}{N(C_i)^{1+2f(\theta)}}[/math]
1.3 Вычислительное ядро алгоритма
тут что-то будет
1.4 Макроструктура алгоритма
и тут
1.5 Схема реализации последовательного алгоритма
и тут
1.6 Последовательная сложность алгоритма
и тут
1.7 Информационный граф
и тут
1.8 Ресурс параллелизма алгоритма
и тут
1.9 Входные и выходные данные алгоритма
и тут
1.10 Свойства алгоритма
и тут
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
и тут
2.2 Локальность данных и вычислений
и тут
2.3 Возможные способы и особенности параллельной реализации алгоритма
и тут
2.4 Масштабируемость алгоритма и его реализации
и тут
2.5 Динамические характеристики и эффективность реализации алгоритма
и тут
2.6 Выводы для классов архитектур
и тут
2.7 Существующие реализации алгоритма
нету :(
3 Литература
<references \>
- ↑ Sudipto Guha, Rajeev Rastogi, Kyuseok Shim ROCK: A robust clustering algorithm for categorical attributes. 2000. Information Systems. Vol 25, Issue 5, Pages 345-366