Уровень алгоритма

Участник:KibAndrey/Ортогонализация Грама-Шмидта

Материал из Алговики
Перейти к навигации Перейти к поиску


Ортогонализация Грама-Шмидта
Последовательный алгоритм
Последовательная сложность [math]O\left(n^3\right)[/math]
Объём входных данных [math][/math]
Объём выходных данных [math][/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math][/math]
Ширина ярусно-параллельной формы [math][/math]


Основные авторы описания: А.В.Кибанов, Т.З.Аджиева.



1 ЧАСТЬ. Свойства и структура алгоритма

1.1 Общее описание алгоритма

Ортогонализации Грама-Шмидта[1] – алгоритм построения для данной линейно независимой системы векторов евклидова или эрмитова пространства [math]V[/math] ортогональной системы ненулевых векторов, которые имеют ту же самую линейную оболочку, при котором каждый вектор построенной системы линейно выражается через векторы данной системы. Исторически это первый алгоритм, описывающий процесс ортогониализации. Традиционно его связывают с именами Йоргена Педерсена Грама и Эрхарда Шмидта. Эрхард Шмидт[2] был учеником великих математиков Германа Шварца и Давида Гильберта. Алгоритм ортогонализации был опубликован Э. Шмидтом в 1907 году [3] в его исследовании интегральных уравнений, которое в свою очередь дало привело к развитию теории гильбертовых пространств. Шмидт использовал процесс ортогонализации применительно к геометрии гильбертова пространства решений интегральных уравнений отмечал, что процесс ортогонализации принципиально такой же, какой прежде использовал Й. Грам.

1.2 Математическое описание алгоритма

1.3 Макроструктура алгоритма

1.4 Макроструктура алгоритма

1.5 Вычислительное ядро алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 ЧАСТЬ Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Математическая энциклопедия / Гл. ред. И. М. Виноградов – М: “Советская энциклопедия”, 1984 – Т.4 Ок–Сло.
  2. Meyer C. D. Matrix analysis and applied linear algebra. – Siam, 2000. – Т. 2.
  3. Erchard Shmidt. Mathematische Annalen Zur Theorie der linearen und nichtlinearen Integralgleichungen, 1. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. – Mathematische Annalen, 63 (1907), pp. 433–476.