Участник:Бобцов Борис/Вычисление определенного интеграла с использованием адаптивно сгущающейся сетки
Вычисление определенного интеграла с использованием адаптивно сгущающейся сетки | |
Последовательный алгоритм | |
Последовательная сложность | [math]-[/math] |
Объём входных данных | [math]-[/math] |
Объём выходных данных | [math]-[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]-[/math] |
Ширина ярусно-параллельной формы | [math]-[/math] |
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Пусть требуется вычислить определённый интеграл [math]I = \int_a^b{f(x)dx}[/math] от непрерывной функции [math]f(x)[/math]. Если может быть найдена первообразная [math]F(x)[/math] подынтегральной функции, то по формуле Ньютона-Лейбница: [math]\int_a^b{f(x)dx} = F(b) - F(a). [/math]
1.2 Математическое описание алгоритма
Будем рассматривать проблему вычисления значения определенного интеграла с некоторой заданной точностью [math] \epsilon [/math]:
[math]I(a,b) = \int_a^b{f(x)dx}[/math]
Пусть на отрезке [math] [a,b] [/math] задана равномерная сетка, содержащая [math] n+1 [/math] узел:
[math] x_{i} = a + \frac{(b - a)} {n} i, i = 0,...,n [/math]
Тогда, согласно методу трапеций, можно численно найти определенный интеграл от функции [math] f (x) [/math] на отрезке [math][a,b][/math]:
[math] \int_a^b{f(x)dx} = \frac{b - a}{n} \left( \frac{f(x_0)}{2} + \sum^{n-1}_{i=1} {f_i} + \frac{f(x_n)}{2} \right)[/math]
Будем полагать значение [math] I [/math] найденным с точностью [math] \epsilon [/math], если выполнено условие:
[math] |I_{n_1} - I_{n_2}| \leq \epsilon |I_{n_2}|, n_1 \gt n_2, [/math] где [math] n_1 [/math] и [math] n_2 [/math] - количество узлов, образующих две разные сетки.
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.7 Существующие реализации алгоритма