Участник:M.grigoriev/Алгоритм Ланцоша для точной арифметики (без переортогонализации)
Алгоритм Ланцоша без переортогонализации |
Основные авторы описания: Григорьев М.А.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Ланцоша был опубликовн физиком и математиком Корнелием Ланцошем[1] в 1950 году. Этот метод является частным случаем алгоритма Арнольда в случае, если исходная матрица [math]A[/math] - симметрична, и был представлен как итерационный метод вычисления собственных значений симметричной матрицы. Этот метод позволяет за [math]k[/math] итераций вычислять [math]k[/math] приближений собственных значений и собственных векторов исходной матрицы. Хотя алгоритм и был эффективным в вычислительном смысле, но он на некоторое время был предан забвению из-за численной неустойчивости. Только в 1970 Ojalvo и Newman[2] модифицировали алгоритм для использования в арифметике с плавающей точкой. Новый метод получил название алгоритма Ланцоша с полной переортогонализацией.
Алгоритм соединяет в себя метод Ланцоша построения крыловского подпространства с процедурой Релея-Ритца. Из ортонормированных векторов Ланцоша строится матрица [math]Q_k = [q_1, q_2, \dots, q_k][/math] размерности [math]n \times k[/math] и в качестве приближенных собственных значений принимаются числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы [math]T_k = Q^T_k A Q[/math] размерности [math]k \times k[/math].
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
- ↑ Lanczos, C. "An iteration method for the solution of the eigenvalue problem of linear differential and integral operators", J. Res. Nat’l Bur. Std. 45, 255-282 (1950).
- ↑ Ojalvo, I.U. and Newman, M., "Vibration modes of large structures by an automatic matrix-reduction method", AIAA J., 8 (7), 1234–1239 (1970).