Уровень алгоритма

Участник:Danyanya/Алгоритм Ланцоша для точной арифметики (без переортогонализации)

Материал из Алговики
Перейти к навигации Перейти к поиску


Алгоритм Ланцоша для точной арифметики (без переортогонализации)
Последовательный алгоритм
Последовательная сложность [math]O(kn^2)[/math]
Объём входных данных [math]\frac{n(n + 1)}{2}[/math]
Объём выходных данных [math]k(n + 1)[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(k)[/math]
Ширина ярусно-параллельной формы [math]O(n^2)[/math]


Основные авторы описания: Д.Р.Слюсарь

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Ланцоша поиска собственных значений был опубликован Корнелием Ланцошем в 1950 году [1]. Этот итерационный алгоритм применим только к эрмитовым матрицам [math]A[/math]. Метод позволяет за [math]k[/math] итераций вычислять [math]k[/math]-ое приближение собственных значений и собственных векторов исходной матрицы [math]A[/math].

В данной статье рассмотрен упрощенный вариант алгоритма Ланцоша, подразумевающие отсутствие влияния ошибок округления на вычислительный процесс.

Данный алгоритм является неустойчивым, вследствие чего на практике применяется модифицированный алгоритм Ланцоша с полной переортогонализацией.

1.2 Математическое описание алгоритма

На вход алгоритма подается эрмитова матрица [math]A = A^\dagger[/math] (в вещественном случае - симметрическая) ,

[math] A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1\ n-1} & a_{1\ n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2\ n-1} & a_{2\ n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3\ n-1} & a_{3\ n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1\ n-1} & \cdots & \cdots & a_{n-2\ n-1} & a_{n-1\ n-1} & a_{n-1\ n} \\ a_{1\ n} & \cdots & \cdots & a_{n-2\ n} & a_{n-1\ n} & a_{n\ n} \\ \end{pmatrix} [/math]

Алгоритм Ланцоша соединяет в себя метод Ланцоша построения крыловского подпространства с процедурой Релея-Ритца. Иными словами, из оргонормированных векторов Ланцоша [??] на каждой итерации строится матрица [math]Q_k = [q_1, q_2, \dots, q_k][/math] размерности [math]n \times k[/math]. В качестве приближенных собственных значений матрицы [math]A[/math] берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы [math]T_k = Q^T_k A Q[/math]:

[math] T_k = \begin{pmatrix} \alpha_1 & \beta_1 & 0 & \dots & 0 \\ \beta_1 & \alpha_2 & \beta_2 & \dots & 0 \\ 0 & \beta_2 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \beta_{k-1} \\ 0 & \dots & \dots & \beta_{k-1} & \alpha_k \end{pmatrix} [/math]

1.3 Вычислительное ядро алгоритма

Вычислительным ядром на каждой итерации является вычисление произведения исходной матрицы [math]A[/math] на вектор [math]q_i[/math] с предыдущей итерации

[math]z = Aq_i[/math]

1.4 Макроструктура алгоритма

Макрооперациями в алгоритме являются:

  • Процедура иттеративного построения трехдиагональной симметричной матрицы, включающая:
    • умножение матрицы на вектор;
    • скалярное произведение векторов;
    • деление (умножение) вектора на вещественное число;
  • Вычисление собственного значение и собственных векторов полученной в ходе работы трехдиагональной симметричной матрицы.

1.5 Схема реализации последовательного алгоритма

Исходные данные: симметричная матрица [math]A[/math], случайный вектор [math]b[/math].

Вычисляемые данные: собственные вектора матрицы [math]T_k[/math] являющиеся столбцами матрицы [math]Q_k V[/math], и матрица собственных значений [math]\Lambda[/math], где [math]V, \Lambda[/math] из спектрального разложения [math]T_k = V\Lambda V^T[/math].

Алгоритм на псевдокоде:

[math] \begin{align} q_1 = & b/ \|b\|_2,\; \beta_0 = 0,\; q_0 = 0\\ for \; & i = 1 \; to \; k \\ & z = Aq_i\\ & \alpha_i = q^T_i z\\ & z = z - \alpha_i q_i - \beta_{i-1}q_{i-1}\\ & \beta_i = \|z\|_2\\ & If \; \beta_i == 0 \; then \\ & \; \; \; \; exit\\ & else \\ & \; \; \; \; q_{i+1} = z / \beta_i \\ end \; & for \end{align} [/math]

После этого вычисляются собственные значения и собственные вектора симметричной трехдиагональной матрицы [math]T_k[/math] наиболее удобным образом.

1.6 Последовательная сложность алгоритма

Последовательная сложность алгоритма рассчитана на основе приведенной выше реализации алгоритма. Исходя из псевдокода последовательно выполняются следующие операции:

  • Умножение квадратной матрицы [math]n * n[/math] на вектор длины [math]n[/math]. Требует [math]n * n[/math] умножений и сложений;
  • Скалярное произведение векторов длины [math]n[/math]. Требует [math]n[/math] умножений и сложений;
  • Сложение векторов длины [math]n[/math]. Требует [math]n[/math] сложений;
  • Умножение вектора длины [math]n[/math] на скаляр. Требует [math]n[/math] умножений;
  • Нахождение квадратичной нормы вектора длины [math]n[/math]. Требует [math]n[/math] умножений и сложений + извлечения квадратного корня;
  • Нахождение собственных значений и векторов трехдиагональной симметричной матрицы размера [math] k \times k [/math]. Наиболее эффективный метод метода «Разделяй-и-властвуй» в среднем требует [math]~O(k^{2.3})[/math] операций.

Таким образом, в худшем случае, алгоритм Ланцоша имеет сложность [math] O(k * n^2) [/math] и односится к квадратичным алгоритмам.

1.7 Информационный граф

Информационный граф алгоритма можно разбить на две части:

  • Общий граф алгоритма, от входа IN до функции вычислений собственных значений полученной трехдиагональной матрицы (EIGEN) (Рис. 1);
Общий граф алгоритма. IN - вход, Iter - одна итерация алгоритма, EIGEN - процедура вычисления собственных значений
  • Подграф на каждой итерации внутри цикла (от IN до NEXT в рисунке 2);
Подграф алгоритма, описывающий одну итерацию. IN - вход в очедедную итерацию, NEXT - переход к следующей итерации или выход цикла, между ними возможен параллелизм при операциях умножения/сложения, вычитания из q(i) q(i-1)-ого, а также деления нового вектора на норму (полученную в блоке Norm). Красными стрелками показаны переходы в непараллельные секции (переход в NEXT неизбежен, из-за чего помечен зеленым)

1.8 Ресурс параллелизма алгоритма

Важно заметить, что итерации алгоритма выполняются строго последовательно, а распараллеливание возможно только внутри итераций.

  • Умножение [math]A^{(n * n)}[/math] на вектор длины [math]n[/math] требует [math]n[/math] ярусов умножений и сложений.
  • Остальные операции в рамках итерации выполняются последовательно (вычисление значений векторов может быть выполнено за 1 ярус):
  • Ресурс параллелизма алгоритма вычисления собственных значений зависит от используемого алгоритма.

Исходя из вышеизложенного, алгоритм Ланцоша обладает линейной сложностью по ширине ЯПФ и по высоте ЯПФ.

1.9 Входные и выходные данные алгоритма

Входные данные: симметричная вещественная матрица [math]A[/math], случайный вектор [math]b[/math], число итераций [math]k[/math].

Объём входных данных: [math]n * (n + 1) + 1 [/math].

Выходные данные: вектор собственных значений [math]\Lambda[/math], матрица собственных векторов [math]E[/math].

Объём выходных данных: [math]k * (n + 1)[/math].

1.10 Свойства алгоритма

  • Алгоритм Ланцоша без переортогонализации не является детерминированным из-за того, что возможно выполнение меньшего числа итераций алгоритма, из-за того, что все собственные значения уже вычислены;
  • Также алгоритм Ланцоша быстро сходится при вычислении собственных значений матрицы [math]A[/math], находящихся на границе ее спектра (в [math]T_{j}[/math] в первую очередь появляются максимальные по модулю собственные значения);
  • Из-за использования точной арифметики алгоритм Ланшоца может найти кратные собственные значения, которые на деле оными не являются;
  • Нестабильность алгоритма (эффект ложной сходимости) присуще плавающей арифметике, из-за ошибок округления в которой на очередном этапе может быть построен линейно зависимый от исходных новый вектор, что повлечет невозможность дальнейшего приближения собственных значений.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

TDB next week

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

В настоящее время существует множество реализаций алгоритма Ланцоша итеративного поиска собственных значений, как входящих в официальные дистрибутивы для вычислений (ARPACK), так и неофициальных реализаций, выложенных на Github. Среди них:

1. The IETL Project [2]

2. MatLab [3]

3. ARPACK [4]

4. Julia Math [5]

...

3 Литература

1. Алгоритм Ланцоша (Википедия) [6]

2. Деммель Д. Вычислительная линейная алгебра/Пер. с англ. ХД Икрамова. – 2001.