Уровень алгоритма

Участник:A.Freeman/Алгоритм Ланцоша для точной арифметики (без переортогонализации)

Материал из Алговики
Перейти к навигации Перейти к поиску


Алгоритм Ланцоша без переортогонализации
Последовательный алгоритм
Последовательная сложность [math]O(kn^2)[/math]
Объём входных данных [math]\frac{n (n + 1)}{2}+1[/math]
Объём выходных данных [math]k + kn[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(k)[/math]
Ширина ярусно-параллельной формы [math]O(n^2)[/math]


Основные авторы описания: Заспа А.Ю., Фролов А.А.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Ланцоша был опубликовн физиком и математиком Корнелием Ланцощем в 1950 году[1]. Этот метод является частным случаем алгоритма Арнольда в случае, если исходная матрица [math]A[/math] - симметрична, и был представлен как итерационный метод вычисления собственных значений симметричной матрицы. Этот метод позволяет за [math]k[/math] итераций вычислять [math]k[/math] приближений собственных значений и собственных векторов исходной матрицы. Хотя алгоритм и был эффективным в вычислительном смысле, но он на некоторое время был предан забвению из-за численной неустойчивости. Только в 1970 Ojalvo и Newman модифицировали алгоритм для использования в арифметике с плавающей точкой[2]. Новый метод получил название алгоритма Ланцоша с полной переортогонализацией. Но эта статья про его исходную версию. На вход алгоритма подается вещественная симметричная матрица [math]A = A^{T}[/math],

[math] A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1\ n-1} & a_{1\ n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2\ n-1} & a_{2\ n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3\ n-1} & a_{3\ n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1\ n-1} & \cdots & \cdots & a_{n-2\ n-1} & a_{n-1\ n-1} & a_{n-1\ n} \\ a_{1\ n} & \cdots & \cdots & a_{n-2\ n} & a_{n-1\ n} & a_{n\ n} \\ \end{pmatrix} [/math]

Поэтому достаточно хранить только чуть больше половины элементов исходной матрицы.

Сам алгоритм соединяет в себя метод Ланцоша построения крыловского подпространства с процедурой Релея-Ритца. На каждой итерации строится матрица [math]Q_k = [q_1, q_2, \dots, q_k][/math] размерности [math]n \times k[/math], состоящая из ортонормированных векторов Ланцоша. А в качестве приближенных собственных значений берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы [math]T_k = Q^T_k A Q[/math] размерности [math]k \times k[/math].

[math] T_k = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{k-1} \\ & & & \beta_{k-1} & \alpha_k \end{pmatrix} [/math]

Нахождение собственных значений и собственных векторов такой матрицы значительно проще чем их вычисление для исходной матрицы. Например, они могут быть вычислены с помощью метода «разделяй и властвуй» вычисления собственных значений и векторов симметричной трехдиагональной матрицы. В этом методе эта процедура занимает [math]O(k^3)[/math] операций, где константа оказывается на практике довольно мала.

1.2 Математическое описание алгоритма

Исходные данные: симметрическая матрица [math]A[/math], начальный вектор [math]b[/math].

Вычисляемые данные: собственные вектора матрицы [math]T_k[/math] являющиеся столбцами матрицы [math]Q_k V[/math], и матрица собственных значений [math]\Lambda[/math], где [math]V, \Lambda[/math] из спектрального разложения [math]T_k = V\Lambda V^T[/math].

Алгоритм на псевдокоде:

[math] \begin{align} q_1 = & \frac{b}{\|b\|_2},\; \beta_0 = 0,\; q_0 = 0\\ for \; & i = 1 \; to \; k \\ & z = Aq_i\\ & \alpha_i = q^T_i z\\ & z = z - \alpha_i q_i - \beta_{i-1}q_{i-1}\\ & \beta_i = \|z\|_2\\ & if \; \beta_i == 0 \; then \; break\\ & q_{i+1} = \frac{z}{\beta_i}\\ end \; & for \end{align} [/math]

Затем вычислить собственные значения и собственные вектора матрицы [math]T_k[/math]

1.3 Вычислительное ядро алгоритма

Вычислительным ядром на каждой итерации является вычисление произведения матрицы на вектор:

[math]z = Aq_i[/math]

1.4 Макроструктура алгоритма

Макрооперациями алгоритма являются: умножение матрицы на вектор, скалярное произведение векторов, умножение вектора на число, вычисление собственных векторов и собственных значений трехдиагональной симметричной матрицы.

1.5 Схема реализации последовательного алгоритма

Последовательность исполнения метода следующая:

[math] \begin{align} 1. \, \beta_0 = & 0,\; q_0 = 0,\\ \|b\|_2 = &\sqrt{\sum\limits_{j=1}^{n} b_j^2},\\ 2. \, q_{1_{j}} = &\frac{b_{j}}{\|b\|_2}, \; j = 1,\, \dots \,, n\\ for \; i = & 1 \; to \; k \\ 3. \, z_j & = \sum\limits_{m=1}^{n} a_{jm} q_{i_m}, \; j = 1,\, \dots \,, n\\ 4. \, \alpha_i & = \sum\limits_{j=1}^{n}q_j z_j\\ 5. \, z_j & = z_j - \alpha_i q_{i_j} - \beta_{i-1}q_{i-1_j}, \, j = 1,\, \dots \,, n\\ 6. \, \beta_i & = \|z\|_2 = \sqrt{\sum\limits_{j=1}^{n} z_m^2}\\ if \; \beta_i & == 0 \; then \; break\\ 7. \, q_{i+1_j} & = \frac{z_j}{\beta_i}, \; j = 1,\, \dots \,, n\\ end \; & for \end{align} [/math]

1.6 Последовательная сложность алгоритма

Для вычисления [math]k[/math] собственных значений матрицы порядка [math]n[/math] и соответствующих им собственных векторов алгоритмом Ланцоша без переортогонализации в худшем случае требуется:

  • [math] kn^2 + 4 kn + n [/math] умножений,
  • [math] k + 1 [/math] вычислений квадратного корня,
  • [math] n(k + 1) [/math] делений,
  • [math] n + k(n^2+3n-1)[/math] сложений (вычитаний),
  • нахождение собственных значений и векторов трехдиагональной симметричной матрицы размера [math] k \times k [/math].

Умножения и сложения (вычитания) составляют основную часть алгоритма.

Для нахождение собственных значений и векторов трехдиагональной симметричной матрицы эффективней всего использовать метод «разделяй и властвуй» вычисления собственных значений и векторов симметричной трехдиагональной матрицы, который требует [math] O(k^3) [/math] операций. При классификации по последовательной сложности, таким образом, метод Ланцоша без переортогонализации относится к алгоритмам с квадратичной сложностью.

1.7 Информационный граф

TBD

1.8 Ресурс параллелизма алгоритма

Алгоритм Ланцоша в параллельной форме состоит из инициализации и [math]k[/math] итераций. Инициализации состоит из следующих ярусов:

  • ярус с [math]n[/math] умножений
  • ярус с [math]n-1[/math] сложений
  • ярус с вычислением квадратного корня
  • ярус [math]n[/math] делений

Итерационная часть алгоритма состоит из следующих ярусов:

  • 4 яруса умножений с количеством операций [math]n^2, n, 2n, n[/math]
  • 4 яруса сложений/вычитаний с количеством операций [math]n^2-n, n-1, 2n, n-1[/math]
  • ярус извлечения квадратного корня с единичным вычислением
  • ярус деления, содержащий [math]n[/math] операций, может отсутствовать на последней итерации

Таким образом, в параллельном варианте основную долю времени будут занимать операции умножения и сложения. При классификации по высоте ЯПФ Алгоритм Ланцоша относитсяк алгоритмам со сложностью [math]O(k)[/math]. При классификации по ширине ЯПФ его сложность будет [math]O(n^2)[/math].

1.9 Входные и выходные данные алгоритма

Входные данные: симметричная матрица [math]A[/math] (элементы [math]a_{ij}, i \geq j[/math]), число [math]k[/math].

Объём входных данных: [math]\frac{n (n + 1)}{2} + 1[/math] (в силу симметричности достаточно хранить только диагональ и над/поддиагональные элементы, единица относится к параметру [math]k[/math]).

Выходные данные: по [math]k[/math] приближений собственных значений и собственных векторов.

Объём выходных данных: [math]k+kn[/math].

1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является квадратичным: [math]\frac{kn^2}{k}[/math].

2 Программная реализация

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации

Реализация в проекте IETL[3]

Реализация в проекте ARPACK [4]

3 Ссылки

  1. Lanczos, C. "An iteration method for the solution of the eigenvalue problem of linear differential and integral operators", J. Res. Nat’l Bur. Std. 45, 255-282 (1950).
  2. Ojalvo, I.U. and Newman, M., "Vibration modes of large structures by an automatic matrix-reduction method", AIAA J., 8 (7), 1234–1239 (1970).
  3. http://www.comp-phys.org/software/ietl/lanczos.html
  4. http://www.caam.rice.edu/software/ARPACK/