Уровень алгоритма

Участница:Ekaterina.ivkina/Метод Якоби вычисления сингулярных чисел и векторов

Материал из Алговики
Перейти к навигации Перейти к поиску


Метод Якоби вычисления сингулярных чисел и векторов
Последовательный алгоритм
Последовательная сложность [math][/math]
Объём входных данных [math][/math]
Объём выходных данных [math][/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math][/math]
Ширина ярусно-параллельной формы [math][/math]


1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Сингулярное разложение было первоначально разработано в дифференциальной геометрии при изучении свойств билинейных форм учеными Эудженио Бельтрами и Камилем Жорданом независимо в 1873 и 1874 годах соответственно. Первое доказательство сингулярного разложения для прямоугольных и комплексных матриц было осуществлено математиками Карлом Эскартом и Гэйлом Янгом в 1936 году.

Сингулярное разложение (Singular Values Decomposition, SVD) является удобным методом при работе с матрицами. Cингулярное разложение показывает геометрическую структуру матрицы и позволяет наглядно представить имеющиеся данные. Сингулярное разложение используется при решении самых разных задач — от приближения методом наименьших квадратов и решения систем уравнений до сжатия и распознавания изображений. Используются разные свойства сингулярного разложения, например, способность показывать ранг матрицы и приближать матрицы данного ранга. Так как вычисления ранга матрицы — задача, которая встречается очень часто, то сингулярное разложение является довольно популярным методом.

Сингулярным разложением матрицы [math]G (n \times n)[/math] называется разложение вида [math]G = U \Sigma V^T[/math] , где [math]U, V[/math] - унитарные матрицы [math]n \times n[/math], [math]\Sigma[/math] - диагональная матрица [math]n \times n[/math] с вещественными положительными числами на главной диагонали. Столбцы матриц [math]U, V[/math] называются соответственно левыми и правыми сингулярными векторами, а значения на диагонали матрицы [math]\Sigma[/math] - сингулярными значениями матрицы [math]G[/math].

Одним из методов нахождения сингулярного разложения матрицы является метод Якоби. Метод Якоби был предложен Карлом Густавом Якоби Якоби в 1846 году и представляет собой итерационный алгоритм вычисления собственных значений и собственных векторов симметричной матрицы. Для вычисления собственных значений необходимо неявно применить метод Якоби к симметричной матрице [math]A = G^T G[/math]. На каждом шаге вычисляется вращение Якоби [math]J[/math], с помощью которого матрица [math]G^TG[/math] неявно пересчитывется в [math]J^TG^TGJ[/math]; вращение выбрано так, чтобы пара внедиагональных элементов из [math]G^TG[/math] обратилась в нули в матрице [math]J^TG^TGJ[/math]. При этом ни [math]G^TG[/math], ни [math]J^TG^TGJ[/math] не вычисляются в явном виде; вместо них вычисляется матрица [math]GJ[/math]. Поэтому алгоритм называется методом односторонних вращений.

1.2 Математическое описание алгоритма

Исходные данные: Матрица [math]G[/math] размера [math](n \times n)[/math] над полем вещественных или комплексных чисел.

Вычисляемые данные:

  • [math]\sigma_i[/math] - сингулярные числа матрицы [math]G[/math],
  • [math]U[/math] - матрица левых сингулярных векторов,
  • [math]V[/math] - матрица правых сингулярных векторов.

Основные формулы метода:

[math]\sigma_i = \parallel G'(:,i)\parallel_2[/math] (2-я норма [math]i[/math]-го столбца в [math]G'[/math]).

[math]U = [u_1, \dots, u_n][/math], где [math] u_i = G'(:,i)/\sigma_i[/math].

[math]V = J[/math], где [math]J[/math] - накопленное произведение вращений Якоби.

Где матрица [math]G'[/math] получается многократным применением одностороннего вращения Якоби к исходной матрице [math]G[/math].

Основные формулы процедуры одностороннего вращения Якоби:


  1. Приведение матрицы [math]G^TG[/math] к диагональному виду методом односторонних вращений Якоби:


1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

<references \>