Участник:Маркова Екатерина/Построение матрицы Адамара

Материал из Алговики
Перейти к навигации Перейти к поиску

Основной автор статьи: Маркова Е.А. 615 гр.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Матрица Адамара [math]H[/math] - это квадратная матрица размера [math]N\times N[/math], составленная из чисел [math]1[/math] и [math]-1[/math], столбцы которой ортогональны, так что справедливо соотношение:

[math]H*H^T = N*E_N[/math],

где [math]E_n[/math] - это единичная матрица размера [math]n[/math]. Матрицы Адамара применяются в различных областях, включая комбинаторику, численный анализ, обработку сигналов.

1.2 Математическое описание алгоритма

Пусть [math]H_N[/math] [math]-[/math] матрица Адамара порядка [math]N[/math] и [math]-H_N[/math] [math]-[/math] матрица с противоположными элементами. Тогда матрица [math]H_{2N}[/math] получается следующим образом: [math]H_{2N} = \begin{bmatrix} H_N & H_N \\ H_N & -H_N \end{bmatrix} [/math]

1.3 Вычислительное ядро алгоритма

Вычислительное ядро рекурсивного алгоритма состоит из [math]\;N^2\;[/math] присвоений значений матрицы Адамара [math]H_{1,1} = 1[/math]; [math]H_{ij} = H_{i(j - \frac{N}{2})}[/math], где [math]i = 1..\frac{N}{2}[/math], [math]j = \frac{N}{2}+1..N[/math]; [math]H_{ij} = H_{(i-\frac{N}{2})j}[/math], где [math]i = \frac{N}{2}+1..N[/math], [math]j = 1.. \frac{N}{2}[/math]; [math]H_{ij} = H_{(i-\frac{N}{2})(j-\frac{N}{2})}[/math], где [math]i = \frac{N}{2}+1..N [/math], [math]j = \frac{N}{2}+1..N[/math].

1.4 Макроструктура алгоритма

Алгоритм не использует в качестве составных частей другие алгоритмы. Как это было описано в вычислительном ядре, в пустые блоки дублируются со сменой или без смены знака значения первого блока матрицы.

1.5 Схема реализации последовательного алгоритма

В описанном виде алгоритм представляет из себя примитивное дублирование элементов матрицы, полученной на предыдущем этапе, в пустующие блоки новой матрицы.

Сначала заполняется правый верхний блок матрицы [math]H[/math]

[math]H_{ij} = H_{i(j - \frac{N}{2})}[/math], где [math]i = 1..\frac{N}{2}[/math], [math]j = \frac{N}{2}+1..N[/math];

затем левый нижний блок

[math]H_{ij} = H_{(i-\frac{N}{2})j}[/math], где [math]i = \frac{N}{2}+1..N[/math], [math]j = 1.. \frac{N}{2}[/math].

Последним заполняется нижний правый блок матрицы

[math]H_{ij} = H_{(i-\frac{N}{2})(j-\frac{N}{2})}[/math], где [math]i = \frac{N}{2}+1..N [/math], [math]j = \frac{N}{2}+1..N[/math].


1.6 Последовательная сложность алгоритма

Для заполнения матрицы [math]H[/math] размера [math]N\times N[/math] необходимо [math]\;N^2\;[/math] присвоений значений. Из чего можно сделать вывод, что рекурсивный метод построения матрицы Адамара является алгоритмом с квадратичной сложностью.

1.7 Информационный граф

Зависимость данных для матрицы размерностью [math]4*4[/math] можно увидеть на рис.1.

Some text

1.8 Ресурс параллелизма алгоритма

Логически алгоритм можно разделить на три части, которые на каждом шаге выполняются независимо. Внутри каждой части происходит [math]2^{2N}-2^{2(N-1)}[/math] независимых присвоений, где [math]N[/math] - номер шага алгоритма, причем размерность матрицы на шаге [math]N[/math] равна [math]2^N[/math]. При этом необходимо ждать завершения предыдущего шага, то есть необходимы синхронизирующие блокировки.

1.9 Входные и выходные данные алгоритма

Входные данные: [math]N[/math] - размерность матрицы.

Выходные данные: матрица размером [math]N\times N[/math].

Объем выходных данных: [math] N^2[/math].

1.10 Свойства алгоритма

Алгоритм полностью детерминирован.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Реализация MATLAB

Реализация PYTHON

Реализация WOLFRAM

На языке Java реализован класс Hadamard не входящий в стандарт языка. С кодом можно ознакомиться по ссылке.

3 Литература

1. Мак-Вильямс Ф., Слоэн Н. — "Теория кодов, исправляющих ошибки" (1979)

2. Кронберг, Ю.И. Ожигов, А.Ю. Чернявский — "Алгебраический аппарат квантовой информатики 2"

3. М. Н. Аршинов, Л. Е. Садовский — "Коды и математика" (1983)