Участник:A.Freeman/Алгоритм Ланцоша для точной арифметики (без переортогонализации)
Алгоритм Ланцоша без переортогонализации | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(kn^2)[/math] |
Объём входных данных | [math]\frac{n (n + 1)}{2}+1[/math] |
Объём выходных данных | [math]k(n+1)[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]O(k \log{n})[/math] |
Ширина ярусно-параллельной формы | [math]O(n^2)[/math] |
Основные авторы описания: Заспа А.Ю. (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7), Фролов А.А. (1.6, 1.7, 1.8, 1.9, 1.10, 2.7)
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации
- 3 Ссылки
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Ланцоша был опубликовн физиком и математиком Корнелием Ланцощем в 1950 году[1]. Этот метод является частным случаем алгоритма Арнольда в случае, если исходная матрица [math]A[/math] - симметрична, и был представлен как итерационный метод вычисления собственных значений симметричной матрицы. Этот метод позволяет за [math]k[/math] итераций вычислять [math]k[/math] приближений собственных значений и собственных векторов исходной матрицы. Хотя алгоритм и был эффективным в вычислительном смысле, но он на некоторое время был предан забвению из-за численной неустойчивости. Только в 1970 Ojalvo и Newman модифицировали алгоритм для использования в арифметике с плавающей точкой[2]. Новый метод получил название алгоритма Ланцоша с полной переортогонализацией. Но эта статья про его исходную версию. На вход алгоритма подается вещественная симметричная матрица [math]A = A^{T}[/math],
- [math] A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1\ n-1} & a_{1\ n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2\ n-1} & a_{2\ n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3\ n-1} & a_{3\ n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1\ n-1} & \cdots & \cdots & a_{n-2\ n-1} & a_{n-1\ n-1} & a_{n-1\ n} \\ a_{1\ n} & \cdots & \cdots & a_{n-2\ n} & a_{n-1\ n} & a_{n\ n} \\ \end{pmatrix} [/math]
Поэтому достаточно хранить только чуть больше половины элементов исходной матрицы.
Сам алгоритм соединяет в себя метод Ланцоша построения крыловского подпространства с процедурой Релея-Ритца. На каждой итерации строится матрица [math]Q_k = [q_1, q_2, \dots, q_k][/math] размерности [math]n \times k[/math], состоящая из ортонормированных векторов Ланцоша. А в качестве приближенных собственных значений берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы [math]T_k = Q^T_k A Q[/math] размерности [math]k \times k[/math].
- [math] T_k = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{k-1} \\ & & & \beta_{k-1} & \alpha_k \end{pmatrix} [/math]
Нахождение собственных значений и собственных векторов такой матрицы значительно проще чем их вычисление для исходной матрицы. Например, они могут быть вычислены с помощью метода «разделяй и властвуй» вычисления собственных значений и векторов симметричной трехдиагональной матрицы. В этом методе эта процедура занимает [math]O(k^3)[/math] операций, где константа оказывается на практике довольно мала.
1.2 Математическое описание алгоритма
Исходные данные: симметрическая матрица [math]A[/math], начальный вектор [math]b[/math].
Вычисляемые данные: собственные вектора матрицы [math]T_k[/math] являющиеся столбцами матрицы [math]Q_k V[/math], и матрица собственных значений [math]\Lambda[/math], где [math]V, \Lambda[/math] из спектрального разложения [math]T_k = V\Lambda V^T[/math]. До начала первой итерации нормируется вектор начального приближения [math]q_1 = \frac{b}{\|b\|_2}[/math]. Затем задаются константы [math]\beta_0 = 0,\; q_0 = 0 [/math].
После выполнения данных действий начинаются итерации алгоритма. Которых будет не больше чем [math]k[/math]. В ходе итераций постепенно формируется матрица [math]T_k[/math] из [math]\alpha_i[/math]-x и [math]\beta_i[/math]-х.
На [math]i[/math]-й итерации происходят следующие вычисления. Вначале вычисляется произведение матрицы на вектор [math]z = Aq_i[/math]. Затем считается скалярное произведение [math]\alpha_i = q^T_i z[/math] и значение сохраняется как элемент формируемой матрицы. После этого необходимо произвести вычисление линейной комбинации векторов [math]z = z - \alpha_i q_i - \beta_{i-1}q_{i-1}[/math]. Норму полученного вектора запишем как элемент матрицы [math]\beta_i = \|z\|_2[/math]. Если [math]\beta_i[/math] оказалась равной нулю, то больше никаких итераций в алгоритме не производят, сразу переходят к вычислению собственных значений и собственных векторов. Иначе, в конце итерации считают [math]q_{i+1} = \frac{z}{\beta_i}[/math] и переходят к следующей итерации.
После всех итераций необходимо вычислить собственные значения и собственные вектора матрицы [math]T_k[/math].[3]
1.3 Вычислительное ядро алгоритма
Вычислительным ядром на каждой итерации является вычисление произведения матрицы на вектор:
- [math]z = Aq_i[/math]
1.4 Макроструктура алгоритма
Макрооперациями алгоритма являются:
- умножение матрицы на вектор. Состоит из операций умножения вектора на число и сложения векторов.
- скалярное произведение векторов.
- линейная комбинация векторов. Состоит из умножений вектора на число и сложений векторов.
- получение нормы вектора. Состоит из скалярного произведения векторов, вычисления квадратного корня.
- деление вектора на число.
- вычисление собственных векторов и собственных значений трехдиагональной симметричной матрицы.
1.5 Схема реализации последовательного алгоритма
Последовательность исполнения метода следующая:
[math]1.\, \beta_0 = 0,\; q_0 = 0[/math] #Инициализируются константы
[math]2.\, \|b\|_2 = \sqrt{\sum\limits_{j=1}^{n} b_j^2}[/math] #Вычисляем норму вектора начального приближения.
[math]3.\, q_{1_{j}} = \frac{b_{j}}{\|b\|_2}, \; j = 1,\, \dots\,, n[/math] #Нормализуем вектор начального приближения.
Начинаются итерации цикла, которых не больше чем [math]k[/math]. На [math]i[/math]-й итерации производятся следующие вычисления:
[math]i.1\, z_j = \sum\limits_{m=1}^{n} a_{jm} q_{i_m}, \; j = 1,\,\dots\,, n[/math] #Считаем результат применения линейного оператора [math]A[/math] к вектору [math]q_i[/math].
[math]i.2\, \alpha_i = \sum\limits_{j=1}^{n}q_{i_j} z_j[/math] #Получаем результат скалярного произведения векторов [math]q_i[/math] и [math]z[/math].
[math]i.3\, z_j = z_j - \alpha_i q_{i_j} - \beta_{i-1}q_{i-1_j}, \, j = 1,\,\dots\,, n[/math] #Вычисляем линейную комбинацию векторов.
[math]i.4\, \beta_i = \|z\|_2 = \sqrt{\sum\limits_{j=1}^{n} z_j^2}[/math] #Считаем норму вектора [math]z[/math].
[math]i.5[/math] Проверка равенства [math]\beta_i == 0[/math] # Если норма оказалась равной нулю, то завершаем итерации и переходим к вычислению собственных векторов и собственных значений полученной матрицы. В обратном случае, продолжаем выполнения итераций.
[math]i.6\, q_{i+1_j} = \frac{z_j}{\beta_i}, \; j = 1,\, \dots \,, n[/math] #Нормируем вектор [math]z[/math].
[math]i.7\,[/math] Если выполнили [math]k[/math] итераций, то завершаем выполнение итераций, переходим к следующему шагу. Иначе начинаем последующую итерацию цикла.
[math]4.[/math] Вычисляем собственные значения и собственные вектора полученной матрицы [math]T_k[/math].
1.6 Последовательная сложность алгоритма
Вычисления [math]k[/math] собственных значений матрицы порядка [math]n[/math] и соответствующих им собственных векторов алгоритмом Ланцоша без переортогонализации состоит из инициализации, [math]k[/math] итераций и нахождения собственных значений и векторов трехдиагональной симметричной матрицы порядка [math]k[/math].
Инициализация состоит из следующих операций:
- вычисление нормы:
- [math]n^2[/math] операций умножения
- [math]n-1[/math] операций сложений
- извлечение квадратного корня
- [math]n[/math] операций делений (нормирование)
Каждая из [math]k[/math] итераций состоит из:
- умножение матрицы на вектор:
- [math]n^2[/math] умножений
- [math]n(n-1)[/math] сложений
- скалярное произведение двух векторов
- [math]n[/math] умножений
- [math]n-1[/math] сложение
- вычисление линейной комбинации векторов:
- [math]2n[/math] умножений
- [math]2n[/math] вычитаний
- норма вектора:
- [math]n[/math] операций умножения
- [math]n-1[/math] операций сложений
- извлечение квадратного корня
- нормирование вектора:
- [math]n[/math] операций деления
Итого (без учета решения трехдиагональной матрицы):
- [math] k(n^2 + 4n) + n [/math] умножений,
- [math] k(n^2+3n-2) + n-1[/math] сложений/вычитаний,
- [math] kn + n [/math] делений,
- [math] k + 1 [/math] вычислений квадратного корня.
Умножения и сложения (вычитания) составляют основную часть алгоритма.
Для нахождение собственных значений и векторов трехдиагональной симметричной матрицы эффективней всего использовать метод «разделяй и властвуй» вычисления собственных значений и векторов симметричной трехдиагональной матрицы, который требует [math] O(k^3) [/math] операций. При классификации по последовательной сложности, таким образом, метод Ланцоша без переортогонализации относится к алгоритмам с квадратичной сложностью.
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
Алгоритм Ланцоша в параллельной форме состоит из инициализации, [math]k[/math] итераций и вычисления собственных значений матрицы [math]T_k[/math], рассмотрение которого выходит за рамки данной статьи.
Заметим, что вычисление суммы [math]n[/math] элементов имеет высоту [math]\log n[/math] и линейную ширину ярусов [math]\frac{n}{2}, \frac{n}{4}, ... , 1[/math].
Инициализации состоит из следующих операций:
- вычисление нормы:
- вычисление скалярного произведения вектора самого на себя:
- ярус умножений шириной [math]n[/math]
- [math]\log{n}[/math] ярусов сложений с наибольшей шириной [math]\frac{n}{2}[/math]
- ярус извлечения квадратного корня с единичным вычислением
- вычисление скалярного произведения вектора самого на себя:
- деление вектора на число (нормирование вектора):
- ярус [math]n[/math] операций деления
Итерационная часть алгоритма состоит из следующих операций:
- умножение матрицы на число:
- ярус умножений с шириной [math]n^2[/math]
- [math]\log n[/math] ярусов с наибольшей шириной [math]\frac{n^2}{2}[/math] (блок вычисления n сумм n элементов)
- вычисление скалярного произведения двух векторов:
- ярус умножений шириной [math]n[/math]
- [math]\log{n}[/math] ярусов сложений с наибольшей шириной [math]\frac{n}{2}[/math]
- вычисление линейной комбинации векторов:
- ярус умножений шириной [math]2n[/math]
- два яруса сложений шириной [math]n[/math]
- вычисление нормы:
- вычисление скалярного произведения вектора самого на себя:
- ярус умножений шириной [math]n[/math]
- [math]\log{n}[/math] ярусов сложений с максимальной шириной [math]\frac{n}{2}[/math]
- ярус извлечения квадратного корня с единичным вычислением
- вычисление скалярного произведения вектора самого на себя:
- проверка на выход из цикла
- деление вектора на число (нормирование вектора, может отсутствовать на последней итерации):
- ярус [math]n[/math] операций деления
Таким образом, в параллельном варианте основную долю времени будут занимать операции сложения при умножении матрицы на вектор.
При классификации по высоте ЯПФ Алгоритм Ланцоша относится к алгоритмам со сложностью [math]O(k \log n)[/math]. При классификации по ширине ЯПФ его сложность будет [math]O(n^2)[/math].
1.9 Входные и выходные данные алгоритма
Входные данные: симметричная матрица [math]A[/math] (элементы [math]a_{ij}, i \geq j[/math]), число [math]k[/math].
Объём входных данных: [math]\frac{n (n + 1)}{2} + 1[/math] (в силу симметричности достаточно хранить только диагональ и над/поддиагональные элементы, единица относится к параметру [math]k[/math]).
Выходные данные: по [math]k[/math] приближений собственных значений и собственных векторов.
Объём выходных данных: [math]k+kn[/math].
1.10 Свойства алгоритма
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является субквадратичным: [math]\frac{kn^2}{k \log{n}}[/math].
Алгоритм Ланцоша без переортогонализации не является детерминированным (возможно выполнение меньшего числа итераций алгоритма), в случае если все собственные значения уже вычислены.
Важное свойство метода Ланцоша состоит в том, что первыми в матрице [math]T_{j}[/math] появляются собственные значения с максимальной величиной по модулю. Таким образом, метод особенно хорошо подходит для вычисления собственных значений матрицы [math]A[/math], находящихся на краях её спектра.
2 Программная реализация
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации
Реализация в проекте IETL[4]
Реализация в проекте ARPACK [5]
3 Ссылки
- ↑ Lanczos, C. "An iteration method for the solution of the eigenvalue problem of linear differential and integral operators", J. Res. Nat’l Bur. Std. 45, 255-282 (1950).
- ↑ Ojalvo, I.U. and Newman, M., "Vibration modes of large structures by an automatic matrix-reduction method", AIAA J., 8 (7), 1234–1239 (1970).
- ↑ Деммель Д. Вычислительная линейная алгебра
- ↑ http://www.comp-phys.org/software/ietl/lanczos.html
- ↑ http://www.caam.rice.edu/software/ARPACK/