Участник:Ivan kolosov/Алгоритм кластеризации, основанный на сетях Кохоннена
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Задача кластеризации — это задача, в которой требуется разбить объекты во ыходных данных на группы, иначе называемые кластерами, таким образом, что внутри каждого кластера объекты в каком-то смысле похожи, а объекты в разных кластерах в каком-то смысле различны. Алгоритм кластеризации, основанный на сетях Кохонена, предназначен для кластеризации вещественных векторов. В основе алгоритма лежит однослойная нейронная сеть, называемая картой Кохонена. Нейроны образуют сетку, в которой каждый нейрон имеет свои координаты. У каждого нейрона есть вектор весов, размерность которого равна размерности входных векторов. Все узлы входного слоя соединены с каждым из нейронов.
Для того, чтобы определить кластер, к которому принадлежит данный входной вектор, вектор подают во входной слой сети. Для каждого нейрона вычисляется расстояние между входным вектором и вектором весов. Нейрон с наименьшим расстоянием между вектором весов и входным вектором, активируется, обозначая принадлежность входного вектора соответствующему кластеру. Таким образом, число кластеров определяется числом нейронов. Особенностью работы алгоритма является то, что близкие друг к другу входные векторы активируют нейроны, близкие друг к другу на сетке. Это свойство оказывается удобным для визуализации кластеризованных данных.
Процесс обучения сети состоит в «соревновании» между нейронами. На каждом шаге случайным образом выбирается один из входных векторов. Из всех нейронов выбирается нейрон-победитель, который имеет наименьшее расстояние между вектором весов и входным вектором. Вектор весов этого нейрона сдвигается в сторону входного вектора. Также в сторону входного вектора сдвигаются векторы весов остальных нейронов, причем степень сдвига зависит от расстояния до нейрона-победителя на сетке. В результате этого процесса векторы весов нейронов распределяются по входному пространству.