Участник:D.Polykovskiy/Алгоритм Бойера-Ватсона
Алгоритм Бойера–Ватсона --- метод, позволяющий построить триангуляцию Делоне конечного множества точек в пространстве любой размерности. Как следствие, алгоритм позволяет получить диаграму Вороного. Этот алгоритм относится к семейству инкрементальных, т.е. проводит построение, поочередно добавляя точки и получая на каждом шаге корректную триангуляцию Делоне текущего подмножества точек.
Изначально строится один треугольник, покрывающий все точки множества. Далее итеративно выполняются следующие действия:
- Добавляется новая точка
- Из триангуляции выкидываются все треугольники, в описанную окружность в которых попадает новая точка. Таким образом в триангуляции образуется дырка в форме многоугольника.
- Эта дырка заполняется треугольниками, содержащими новую точку в качестве одной вершины и ребрами дырки в качестве противолежащей стороны.
After every insertion, any triangles whose circumcircles contain the new point are deleted, leaving a star-shaped polygonal hole which is then re-triangulated using the new point. By using the connectivity of the triangulation to efficiently locate triangles to remove, the algorithm can take O(N log N) operations to triangulate N points, although special degenerate cases exist where this goes up to O(N2).[1]
The algorithm is sometimes known just as the Bowyer Algorithm or the Watson Algorithm. Adrian Bowyer and David Watson devised it independently of each other at the same time, and each published a paper on it in the same issue of The Computer Journal (see below).
1 Pseudocode
The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles. Pre-computing the circumcircles can save time at the expense of additional memory usage. And if the points are uniformly distributed, sorting them along a space filling Hilbert curve prior to insertion can also speed point location.[2]
function BowyerWatson (pointList)
// pointList is a set of coordinates defining the points to be triangulated
triangulation := empty triangle mesh data structure
add super-triangle to triangulation // must be large enough to completely contain all the points in pointList
for each point in pointList do // add all the points one at a time to the triangulation
badTriangles := empty set
for each triangle in triangulation do // first find all the triangles that are no longer valid due to the insertion
if point is inside circumcircle of triangle
add triangle to badTriangles
polygon := empty set
for each triangle in badTriangles do // find the boundary of the polygonal hole
for each edge in triangle do
if edge is not shared by any other triangles in badTriangles
add edge to polygon
for each triangle in badTriangles do // remove them from the data structure
remove triangle from triangulation
for each edge in polygon do // re-triangulate the polygonal hole
newTri := form a triangle from edge to point
add newTri to triangulation
for each triangle in triangulation // done inserting points, now clean up
if triangle contains a vertex from original super-triangle
remove triangle from triangulation
return triangulation
2 See also
3 References
- Шаблон:Cite journal
- Шаблон:Cite journal
- Efficient Triangulation Algorithm Suitable for Terrain Modelling generic explanations with source code examples in several languages.