Поиск изоморфных подграфов
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Пусть заданы два графа [math]G[/math] и [math]H[/math]. Задача поиска изоморфных подграфов состоит в том, чтобы определить, существует ли у графа [math]G[/math] подграф, изоморфных [math]H[/math], и в случае положительного ответа – предъявить хотя бы один такой подграф.
Задача поиска изоморфных подграфов является NP-полной, поэтому не существует известных алгоритмов, решающих её за полиномиальное время.
Алгоритм Ульмана[1][2] решает задачу поиска изоморфных подграфов за экспоненциальное время, при этом
- для фиксированного графа [math]H[/math] время полиномиальное;
- для планарного графа [math]G[/math] время работы линейное (при фиксированном графе [math]H[/math]).
1.2 Математическое описание
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Описание схемы реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
1.9 Описание входных и выходных данных
1.10 Свойства алгоритма
2 Программная реализация алгоритмов
2.1 Особенности реализации последовательного алгоритма
2.2 Описание локальности данных и вычислений
2.3 Возможные способы и особенности реализации параллельного алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
- ↑ Ullmann, Julian R. “An Algorithm for Subgraph Isomorphism.” Journal of the ACM 23, no. 1 (January 1976): 31–42. doi:10.1145/321921.321925.
- ↑ Ullmann, Julian R. “Bit-Vector Algorithms for Binary Constraint Satisfaction and Subgraph Isomorphism.” Journal of Experimental Algorithmics 15 (March 2010): 1.1. doi:10.1145/1671970.1921702.