Нахождение суммы элементов массива сдваиванием
Содержание
- 1 Описание свойств и структуры алгоритма
- 1.1 Словесное описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
1 Описание свойств и структуры алгоритма
1.1 Словесное описание алгоритма
Метод сдваивания используется в качестве быстрого варианта вычисления длинных последовательностей ассоциативных операций (например, массового суммирования). Получил распространение благодаря как наименьшей из возможных высоте алгортима, так и из-за ряда своих вычислительных характеристик, а также (в среде нечисленных алгоритмов) из-за своей рекурсивности, то есть лёгкости записи.
1.2 Математическое описание
Исходные данные: одномерный массив [math]n[/math] чисел.
Вычисляемые данные: сумма элементов массива.
Формулы метода: элементы на каждом этапе алгоритма разбиваются на пары. В каждой из пар находится сумма составляющих её элементов. На следующем этапе на пары разбиваются уже эти суммы (и те элементы, которые не вошли в уже вычисленные суммы), и т. д.
1.3 Вычислительное ядро алгоритма
Вычислительное ядро последовательно-параллельного метода суммирования можно составить как из элементарных бинарных (всего [math]n - 1[/math]) вычислений сумм, так и (рекуррентно) из набора реализаций метода сдваивания меньших размерностей.
1.4 Макроструктура алгоритма
Как уже записано в описании ядра алгоритма, основную часть метода составляют рекурсивные вызовы сумм массивов меньшей размерности.
1.5 Описание схемы реализации последовательного алгоритма
В своём чистом виде суммирование сдваиванием редко используют при последовательной реализации, поскольку при этом усложняется общая схема алгоритма и резко растёт потребность в памяти, нужной для хранения промежуточных данных.
1.6 Последовательная сложность алгоритма
Для вычисления суммы массива, состоящего из [math]N[/math] элементов, при любых разложениях [math]N[/math] на пары суть алгоритма сводится к простому переставлению скобок в формуле суммирования, и количество операций неизменно и равно [math]N - 1[/math]. Поэтому алгоритм должен быть отнесён к алгоритмам линейной сложности по количеству последовательных операций.
1.7 Информационный граф
Опишем граф алгоритма в виде рисунка. В данном случае выполнено суммирование 16 элементов массива.
1.8 Описание ресурса параллелизма алгоритма
Для суммирования массива порядка [math]n[/math] методом сдваивания в параллельном варианте требуется последовательно выполнить [math]\lceil \log_2 n \rceil[/math] ярусов с убывающим (от [math]\frac{n}{2}[/math] до [math]1[/math]) количеством операций суммирования. При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с логарифмической сложностью. При классификации по ширине ЯПФ его сложность будет линейной.
1.9 Описание входных и выходных данных
Входные данные: массив [math]x[/math] (элементы [math]x_i[/math]).
Дополнительные ограничения: отсутствуют.
Объём входных данных: [math]N[/math].
Выходные данные: сумма элементов массива.
Объём выходных данных: один скаляр.
1.10 Свойства алгоритма
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является [math]\frac{n}{\log_2 n}[/math] (отношение линейной к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — всего-навсего 1 (входных и выходных данных столько же, сколько операций). При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа.