Участник:Казаков Артем/Алгоритм концептуальной кластеризации COBWEB

Материал из Алговики
Перейти к навигации Перейти к поиску

Данный документ содержит описание схемы, по которой предлагается описывать свойства и структуру каждого алгоритма. Описание состоит из двух частей. В первой части описываются собственно алгоритмы и их свойства, а вторая посвящена описанию особенностей их программной реализации с учетом конкретных программно-аппаратных платформ. Такое деление на части сделано для того, чтобы машинно-независимые свойства алгоритмов, которые определяют качество их реализации на параллельных вычислительных системах, были бы выделены и описаны отдельно от множества вопросов, связанных с последующими этапами программирования алгоритмов и исполнения результирующих программ.

Общая схема описания алгоритмов имеет следующий вид:

1 ЧАСТЬ. Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Алгоритм COBWEB – классический метод инкрементальной концептуальной кластеризации. Он создаёт иерархическую кластеризацию в виде дерева классификации: каждый узел этого дерева ссылается на концепт и содержит вероятностное описание этого концепта, которое включает в себя вероятность принадлежности концепта к данному узлу и условные вероятности вида: P(Ai = vij|Ck), где Ai = vij – пара атрибут-значение, Ck – класс концепта.

Узлы, находящейся на определённом уровне дерева классификации, называют срезом. Алгоритм использует для построения дерева классификации эвристическую меру оценки, называемую полезностью категории – прирост ожидаемого числа корректных предположений о значениях атрибутов при знании об их принадлежности к определённой категории относительно ожидаемого числа корректных предположений о значениях атрибутов без этого знания. Чтобы встроить новый объект в дерево классификации, алгоритм COBWEB итеративно проходит всё дерево в поисках «лучшего» узла, к которому отнести этот объект. Выбор узла осуществляется на основе помещения объекта в каждый узел и вычисления полезности категории получившегося среза. Также вычисляется полезность категории для случая, когда объект относится к вновь создаваемому узлу. В итоге объект относится к тому узлу, для которого полезность категории больше.

Однако COBWEB имеет ряд ограничений. Во-первых, он предполагает, что распределения вероятностей значений различных атрибутов статистически независимы друг от друга. Однако это предположение не всегда верно, потому как часто между значениями атрибутов существует корреляция. Во-вторых, вероятностное представление кластеров делает очень сложным их обновление, особенно в том случае, когда атрибуты имеют большое число возможных значений. Это вызвано тем, что сложность алгоритма зависит не только от количества атрибутов, но и от количества их возможных значений.

1.2 Математическое описание алгоритма

Пусть [math]X[/math] — множество объектов, [math]Y[/math] — множество номеров (имён, меток) кластеров. Задана функция расстояния между объектами [math]\rho(x,x')[/math]. Имеется конечная обучающая выборка объектов [math]X^m = \{ x_1, \dots, x_m \} \subset X[/math]. Требуется разбить выборку на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из объектов, близких по метрике [math]\rho[/math], а объекты разных кластеров существенно отличались. При этом каждому объекту [math]x_i\in X^m[/math] приписывается номер кластера [math]y_i[/math].

P(Aj = υij | Ck) - это условная вероятность, с которой свойство Aj, принимает значение υij, если объект относится к категории Ck. Для каждой категории в иерархии определены вероятности вхождения всех значений каждого свойства. При предъявлении нового экземпляра система COBWEB оценивает качество отнесения этого примера к существующей категории и модификации иерархии категорий в соответствии с новым представителем. Критерием оценки качества классификации является полезность категории (category utility). Критерий полезности категории был определен при исследовании человеческой категоризации. Он учитывает влияние категорий базового уровня и другие аспекты структуры человеческих категорий.

Критерий полезности категории максимизирует вероятность того, что два объекта, отнесенные к одной категории, имеют одинаковые значения свойств и значения свойств для объектов из различных категорий отличаются. Полезность категории определяется формулой

[math]CU = \sum_{k} \sum_{i} \sum_{j} P(A = u_{ij}|C_k) P(C_K|A = u_{ij}) P(A = u_{ij})[/math]

Значения суммируются по всем категориям Ck, всем свойствам Aj и всем значениям свойств υij. Значение P(Aj = υij | Ck) называется предсказуемостью (predictability). Это вероятность того, что объект, для которого свойство Aj- принимает значение υij, относится к категории Ck. Чем выше это значение, тем вероятнее, что свойства двух объектов, отнесенных к одной категории, имеют одинаковые значения. Величина P(Ck | A = υij) называется предиктивностью (predictiveness). Это вероятность того, что для объектов из категории Ck свойство Aj принимает значение υij. Чем больше эта величина, тем менее вероятно, что для объектов, не относящихся к данной категории, это свойство будет принимать указанное значение. Значение P(A = υij) - это весовой коэффициент, усиливающий влияние наиболее распространенных свойств. Благодаря совместному учету этих значений высокая полезность категории означает высокую вероятность того, что объекты из одной категории обладают одинаковыми свойствами, и низкую вероятность наличия этих свойств у объектов из других категорий.

После некоторых преобразований (Байеса в частности) и некоторых агрументированных изменений мы получаем более правильную формулу:

[math]CU = \frac{ \sum_{k=1}^N {P(A={\upsilon}_{ij}|C_k)} \sum_{j} { \sum_{i} {({P(C_k | A={\upsilon}_{ij})}^2 - {P(A={\upsilon}_{ij})}^2)}}}{N}[/math] N -число категорий.


1.3 Вычислительное ядро алгоритма

В описываемом алгоритме выделяется и описывается вычислительное ядро, т.е. та часть алгоритма, на которую приходится основное время работы алгоритма. Если в алгоритме несколько вычислительных ядер, то отдельно описывается каждое ядро. Описание может быть сделано в достаточно произвольной форме: словесной или с использованием языка математических формул. Вычислительное ядро может полностью совпадать с описываемым алгоритмом.

1.4 Макроструктура алгоритма

Если алгоритм использует в качестве составных частей другие алгоритмы, то это указывается в данном разделе. Если в дальнейшем имеет смысл описывать алгоритм не в максимально детализированном виде (т.е. на уровне арифметических операций), а давать только его макроструктуру, то здесь описывается структура и состав макроопераций. Если в других разделах описания данного алгоритма в рамках AlgoWiki используются введенные здесь макрооперации, то здесь даются пояснения, необходимые для однозначной интерпретации материала. Типичные варианты макроопераций, часто встречающиеся на практике: нахождение суммы элементов вектора, скалярное произведение векторов, умножение матрицы на вектор, решение системы линейных уравнений малого порядка, сортировка, вычисление значения функции в некоторой точке, поиск минимального значения в массиве, транспонирование матрицы, вычисление обратной матрицы и многие другие.

Описание макроструктуры очень полезно на практике. Параллельная структура алгоритмов может быть хорошо видна именно на макроуровне, в то время как максимально детальное отображение всех операций может сильно усложнить картину. Аналогичные аргументы касаются и многих вопросов реализации, и если для алгоритма эффективнее и/или технологичнее оставаться на макроуровне, оформив макровершину, например, в виде отдельной процедуры, то это и нужно отразить в данном разделе. Выбор макроопераций не однозначен, причем, выделяя различные макрооперации, можно делать акценты на различных свойствах алгоритмов. С этой точки зрения, в описании одного алгоритма может быть представлено несколько вариантов его макроструктуры, дающих дополнительную информацию о его структуре. На практике, подобные альтернативные формы представления макроструктуры алгоритма могут оказаться исключительно полезными для его эффективной реализации на различных вычислительных платформах.

1.5 Схема реализации последовательного алгоритма

cobweb(Node, Instance)

Begin
 if узел Node - это лист, then
   begin
    создать два дочерних узла L1 и L2 для узла Node;
    задать для узла L1 те же вероятности, что и для узла Node;
    инициализировать вероятности для узла L2 соответствующими значениями объекта Instance;
    добавить Instance к Node, обновив вероятности для узла Node ;
   end
 else
   begin
    добавить Instance к Node, обновив вероятности для узла Node;
    для каждого дочернего узла С узла Node вычислить полезность категории при отнесении экземпляра Instance к категории С;
    пусть S1 - значение полезности для наилучшей классификации C1;
    пусть S2 - значение для второй наилучшей классификации C2;
    пусть S3 - значение полезности для отнесения экземпляра к новой категории;
    пусть S4 - значение для слияния C1 и C2 в одну категорию;
    пусть S5 - значение для разделения C1 (замены дочерними категориями);
   end
  if S1 - максимальное значение CU, then
    cobweb(C1, Instance) %отнести экземпляр к C1
  else
    if S3 - максимальное значение CU, then
      инициализировать вероятности для новой категории Cm значениями Instance 
    else 
      if S4 - максимальное значение CU, then 
        begin
          пусть Cm - результат слияния C1 и C2; 
          cobweb(Cm, Instance);
        end 
      else
        if S5 - максимальное значение CU, then 
          begin 
            разделить C1; % Cm - новая категория
            cobweb(Cm, Instance)
          end;
end

1.6 Последовательная сложность алгоритма

Пусть [math]B[/math] - среднее число потомков узлов в дереве классификации и [math]n[/math] - число уже классифицированных объектов, тогда [math]log_{B}n[/math] - оценка глубины дерева классификации. Кроме того, положим [math]A[/math] равным числу свойств у классифицируемых объектов, а [math]V[/math] - среднее число значений, которые могу принимать данные свойства. В ходе определения к каком у классу отнести каждый следующий объект из входного набора, необходимо рассчитать значение функции полезности категории. Сложность расчета данной функции есть [math]O(BAV)[/math] и данное действие необходимо повторить для каждого из B потомков (в среднем). Кроме того, для классификации нам необходимо пройти по дереву, имеющему глубину [math]log_{B}n[/math], таким образом мы имеем оценку по сложности [math]O(log_{B}n*B^{2}AV)[/math].

1.7 Информационный граф

Cobweb graph.png Для выполнения каждой итерации алгоритма (добавления очередного элемента в дерево классификации) необходимо иметь доступ по всему текущему состоянию дерева классификации. Однако, внутри шага алгоритма наблюдается полная независимость по данным. Имеется возможность произвести расчет функции полезности для каждого кластера независимо и в конце сравнить их значения.

1.8 Ресурс параллелизма

Основной вычислительной нагрузкой алгоритма является вычисление функции полезности для категорий. Эта часть алгоритма поддается наиболее простому распараллеливанию. Существует два пути к получению параллельной версии исходного алгоритма:

  • распараллеливание процесса вычисления совокупности функций полезности
  • распараллеливание вычисления каждой конкретной функции полезности

Оба данных подхода к распараллеливанию могут быть использованы вместе.

1.9 Входные и выходные данные алгоритма

В данном разделе необходимо описать объем, структуру, особенности и свойства входных и выходных данных алгоритма: векторы, матрицы, скаляры, множества, плотные или разреженные структуры данных, их объем. Полезны предположения относительно диапазона значений или структуры, например, диагональное преобладание в структуре входных матриц, соотношение между размером матриц по отдельным размерностям, большое число матриц очень малой размерности, близость каких-то значений к машинному нулю, характер разреженности матриц и другие.

1.10 Свойства алгоритма

Описываются прочие свойства алгоритма, на которые имеет смысл обратить внимание на этапе реализации. Как и ранее, никакой привязки к конкретной программно-аппаратной платформе не предполагается, однако вопросы реализации в проекте AlgoWiki всегда превалируют, и необходимость обсуждения каких-либо свойств алгоритмов определяется именно этим.

Весьма полезным является соотношение последовательной и параллельной сложности алгоритма. Оба понятия мы рассматривали ранее, но здесь делается акцент на том выигрыше, который теоретически может дать параллельная реализация алгоритма. Не менее важно описать и те сложности, которые могут возникнуть в процессе получения параллельной версии алгоритма.

Вычислительная мощность алгоритма равна отношению числа операций к суммарному объему входных и выходных данных. Она показывает, сколько операций приходится на единицу переданных данных. Несмотря на простоту данного понятия, это значение исключительно полезно на практике: чем выше вычислительная мощность, тем меньше накладных расходов вызывает перемещение данных для их обработки, например, на сопроцессоре, ускорителе или другом узле кластера. Например, вычислительная мощность скалярного произведения двух векторов равна всего лишь [math]1[/math], а вычислительная мощность алгоритма умножения двух квадратных матриц равна [math]2n/3[/math].

Вопрос первостепенной важности на последующем этапе реализации - это устойчивость алгоритма. Все, что касается различных сторон этого понятия, в частности, оценки устойчивости, должно быть описано в данном разделе.

Сбалансированность вычислительного процесса можно рассматривать с разных сторон. Здесь и сбалансированность типов операций, в частности, арифметических операций между собой (сложение, умножение, деление) или же арифметических операций по отношению к операциям обращения к памяти (чтение/запись). Здесь и сбалансированность операций между параллельными ветвями алгоритма. С одной стороны, балансировка нагрузки является необходимым условием эффективной реализации алгоритма. Вместе с этим, это очень непростая задача, и в описании должно быть отмечено явно, насколько алгоритм обладает этой особенностью. Если обеспечение сбалансированности не очевидно, желательно описать возможные пути решения этой задачи.

На практике важна детерминированность алгоритмов, под которой будем понимать постоянство структуры вычислительного процесса. С этой точки зрения, классическое умножение плотных матриц является детерминированным алгоритмом, поскольку его структура при фиксированном размере матриц никак не зависит от элементов входных матриц. Умножение разреженных матриц, когда матрица хранятся в одном из специальных форматов, свойством детерминированности уже не обладает: его свойства, например, степень локальности данных зависит от структуры разреженности входных матриц. Итерационный алгоритм с выходом по точности также не является детерминированным: число итераций, а значит и число операций, меняется в зависимости от входных данных. В этом же ряду стоит использование датчиков случайных чисел, меняющих вычислительный процесс для различных запусков программы. Причина выделения свойства детерминированности понятна: работать с детерминированным алгоритмом проще, поскольку один раз найденная структура и будет определять качество его реализации. Если детерминированность нарушается, то это должно быть здесь описано вместе с описанием того, как недетерминированность влияет на структуру вычислительного процесса.

Серьезной причиной недетерминированности работы параллельных программ является изменение порядка выполнения ассоциативных операций. Типичный пример - это использование глобальных MPI-операций на множестве параллельных процессов, например, суммирование элементов распределенного массива. Система времени исполнения MPI сама выбирает порядок выполнения операций, предполагая выполнение свойства ассоциативности, из-за чего ошибки округления меняются от запуска программы к запуску, внося изменения в конечный результат ее работы. Это очень серьезная проблема, которая сегодня встречается часто на системах с массовым параллелизмом и определяет отсутствие повторяемости результатов работы параллельных программ. Данная особенность характерна для второй части AlgoWiki, посвященной реализации алгоритмов, но вопрос очень важный, и соответствующие соображения, по возможности, должны быть отмечены и здесь.

Заметим, что, в некоторых случаях, недетерминированность в структуре алгоритмов можно "убрать" введением соответствующих макроопераций, после чего структура становится не только детерминированной, но и более понятной для восприятия. Подобное действие также следует отразить в данном разделе.

Степень исхода вершины информационного графа показывает, в скольких операциях ее результат будет использоваться в качестве аргумента. Если степень исхода вершины велика, то на этапе реализации алгоритма нужно позаботиться об эффективном доступе к результату ее работы. В этом смысле, особый интерес представляют рассылки данных, когда результат выполнения одной операции используется во многих других вершинах графа, причем число таких вершин растет с увеличением значения внешних переменных.

"Длинные" дуги в информационном графе [1] говорят о потенциальных сложностях с размещением данных в иерархии памяти компьютера на этапе выполнения программы. С одной стороны, длина дуги зависит от выбора конкретной системы координат, в которой расположены вершины графа, а потому в другой системе координат они попросту могут исчезнуть (но не появится ли одновременно других длинных дуг?). А с другой стороны, вне зависимости от системы координат их присутствие может быть сигналом о необходимости длительного хранения данных на определенном уровне иерархии, что накладывает дополнительные ограничения на эффективность реализации алгоритма. Одной из причин возникновения длинных дуг являются рассылки скалярных величин по всем итерациям какого-либо цикла: в таком виде длинные дуги не вызывают каких-либо серьезных проблем на практике.

Для проектирования специализированных процессоров или реализации алгоритма на ПЛИС представляют интерес компактные укладки информационного графа [1], которые также имеет смысл привести в данном разделе.

2 ЧАСТЬ. Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература