Алгоритм Ланцоша с выборочной ортогонализацией

Материал из Алговики
Перейти к навигации Перейти к поиску
Symbol wait.svgЭта работа прошла предварительную проверку
Дата последней правки страницы:
07.12.2016
Данная работа соответствует формальным критериям.
Проверено ASA.


[math] \beta_0=0,q_0=0[/math]
[math] q_{1} = \frac{b_{j}}{\|b\|_2}[/math], где [math] \|b\|_2 = \sqrt{\sum\limits_{j=1}^{n} b_j^2}[/math]
[math] for\, j=1\,\, to\, \, k\, \, do:[/math]
    [math]z_j = \sum\limits_{m=1}^{n} a_{jm} q_{i_m}, \; j = 1,\,\dots\,, n[/math] #Считаем результат применения линейного оператора     
    [math]z&=Aq_j,  [/math]
    [math]\alpha_j&=q_j^Tz, [/math]
    [math]z&=z-\alpha_jq_j-\beta_{j}q_{j-1},  [/math]
    [math]\beta_{j+1}&=||z|| [/math]
    [math]q_{j+1}&=z/\beta_{j+1}, [/math]
    [math] [/math]
    [math] [/math]
    [math] [/math]

[math]A[/math] к вектору [math]q_i[/math].

[math]i.2\, \alpha_i = \sum\limits_{j=1}^{n}q_{i_j} z_j[/math] #Получаем результат скалярного произведения векторов [math]q_i[/math] и [math]z[/math].

[math]i.3\, z_j = z_j - \alpha_i q_{i_j} - \beta_{i-1}q_{i-1_j}, \, j = 1,\,\dots\,, n[/math] #Вычисляем линейную комбинацию векторов.

[math]i.4\, \beta_i = \|z\|_2 = \sqrt{\sum\limits_{j=1}^{n} z_j^2}[/math] #Считаем норму вектора [math]z[/math].

[math]i.5[/math] Проверка равенства [math]\beta_i == 0[/math] # Если норма оказалась равной нулю, то завершаем итерации и переходим к вычислению собственных векторов и собственных значений полученной матрицы. В обратном случае, продолжаем выполнения итераций.

[math]i.6\, q_{i+1_j} = \frac{z_j}{\beta_i}, \; j = 1,\, \dots \,, n[/math] #Нормируем вектор [math]z[/math].

[math]i.7\,[/math] Если выполнили [math]k[/math] итераций, то завершаем выполнение итераций, переходим к следующему шагу. Иначе начинаем последующую итерацию цикла.

[math]4.[/math] Вычисляем собственные значения и собственные вектора полученной матрицы [math]T_k[/math].