Участник:Bormas
Задача
Пусть [math] X_1, X_2,...X_n [/math] - независимые одинаково распределенные случайные величины с общей функцией распределения [math] F(x) [/math], для которой при [math] x \to +\infty [/math] имеет место следующее представление:[math] F(x)=1-C(lnx)^{\beta-1}x^{-\alpha} [/math], где [math] C \gt 0 , \alpha \gt 0, \forall \beta [/math]. Показать, что [math] \lim_{n \to \infty}F(X_n^{(n)}) = \exp{x^{-\alpha}}, x \gt 0 [/math] и найти коэффициенты [math] a_n \gt 0 [/math]. Методом статистического анализа построить гистограмму статистики [math] T_n = \frac{X_n^{(n)}}{a_n} [/math] для функции [math] F(x) = 1 - \frac{2\sqrt{ln2}}{(x+2)\sqrt{ln(x+2)}}, x \gt 0 [/math] и сравнить её с функцией предельного распределения.