Участник:Сорокин Александр/Метод сопряженных градиентов (Решение СЛАУ)

Материал из Алговики
Перейти к навигации Перейти к поиску

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод сопряженных градиентов представляет собой итерационный метод для численного решения системы уравнений с симметричной и положительно определенной матрицей, является итерационным методом Крыловского типа. Основная идея метода заключается в том, чтобы минимизировать на подпространствах Крылова А-норму ошибки.

1.2 Математическое описание алгоритма

Пусть необходимо найти решение системы уравнений [math] Ax = b [/math], где [math] A^* = A \gt 0 [/math].
Рассмотрим функционал [math] \phi (x) = \frac{1}{2}x^T A x - x^T b [/math].
Если [math] x^* [/math] это решение задачи минимизации данного функционала, то в этой точке градиент [math] \bigtriangledown \phi (x^*) = Ax^* - b [/math] должен быть равен нулю. Таким образом, минимизируя функционал [math] \phi (x) [/math] мы получим решение исходной системы.

1.2.1 Метод градиентного спуска

Как известно, градиент [math] \bigtriangledown \phi (x) [/math] является направлением наибольшего роста функции.
Метод градиентного спуска основан на стратегии движения в строну, противоположную возрастанию функционала. Оптимальным направлением в этом случае будет антиградиент [math] -\bigtriangledown \phi (x) [/math] и двигаться по нему нужно будет до тех пор, пока функционал убывает.
Таким образом можно построить следующий итерационный метод:

  1. Выберем произвольное начальное приближение [math] x_0 [/math].
  2. [math] x_{i+1} = x_{i} + \alpha_i p_i [/math], где [math] p_i [/math] — направление движения, а [math] \alpha_i [/math] — величина шага.

Из рассуждений выше понятно что оптимальным является направление [math] p_i = - \bigtriangledown \phi (x_{i}) = b - Ax_i = r_i [/math]. Величина [math] \alpha_i [/math] выбирается из соображений [math] \alpha_i = \underset{\alpha}{\operatorname{argmin}} \phi (x_i + \alpha p_i) [/math]. Аналитическую формулу [math] \alpha_i = \frac{\bigtriangledown\phi (x_i)^T \bigtriangledown\phi (x_i)}{\bigtriangledown\phi (x_i)^T A \bigtriangledown\phi (x_i)} = \frac{r_i ^T r_i}{r_i ^T A r_i} = \frac{p_i ^T r_i}{p_i ^T A p_i} [/math] можно получить из [math] \frac{d}{d\alpha} \phi (x_i + \alpha p_i) = 0 [/math].

1.2.2 Метод сопряженных направлений

Метод градиентного спуска обычно сходится очень долго. Можно построить алгоритм который сходится не больше чем за n шагов.
Предположим что у нас есть n линейно-независимых векторов [math] p_1, ... p_n [/math] таких что [math] (p_i, p_j)_A = (Ap_i, p_j) = 0, i \neq j [/math].
Так как имеется n таких векторов, то они образуют базис пространства и любой вектор можно выразить через них, в том числе [math] x^* - x_0 = \sum_{i = 1}^n \alpha_i p_i [/math].
Домножим это равенство А-скалярно на [math] p_k [/math] для всех k. С левой стороны получим [math] (x^* - x_0, p_k)_A = (b - Ax_0, p_k) = p_k ^T r_0 [/math]. С правой: [math] \sum_{i = 1}^n \alpha_i (p_i, p_k)_A = \alpha_k (p_k, p_k)_A = \alpha_k p_k ^T A p_k [/math]. Тем самым [math] \alpha_k = \frac{p_k^T r_0}{p_k^T A p_k} [/math].
Итак мы получили новый алгоритм решения:

  1. Выбираем начальное приближение [math] x_0 [/math] и А-ортогональные направления [math] p_1, ..., p_n [/math].
  2. Для всех [math] k = 1, ... n [/math]:
    1. Выбираем [math] \alpha_k = \frac{p_k^T r_0}{p_k^T A p_k} [/math].
    2. Обновляем [math] x_{k+1} = x_{k} + \alpha_k p_k [/math].

Таким образом получим [math] x_{n} = x^* [/math].
Кроме того, стоит обратить внимание на следующий факт: [math] p_k^T r_0 = p_k^T(b - Ax_0) = p_k^T(b - A[x_0 + \alpha_1 p_1 + ... + \alpha_{k-1} p_{k-1}]) = p_k^T r_k [/math], тем самым формула для [math] \alpha_k [/math] в этом методе совпадает с формулой в методе градиентного спуска.

1.2.3 Метод сопряженных градиентов

Метод сопряженных градиентов это частный случай метода сопряженных направлений.
В этом методе мы будем искать новое приближение для решения [math] x [/math] и новый вектор направления [math] p [/math]. Новый вектор направления будем получать используя алгоритм Грамма-Шмидта, где в качестве начальной линейно-независимой системы будем использовать невязки [math] r_i [/math]. Метод будет выглядеть так:

  1. Выбираем начальное приближение [math] x_0 [/math]. Вычисляем невязку и вектор направления [math] r_0 = b - Ax_0, p_0 = r_0 [/math].
  2. Для [math] k = 0, 1, 2 ... [/math] и до тех пор пока итерационный процесс не сойдется:
    1. Вычисляем [math] \alpha_k = \frac{p_k^T r_k}{p_k^T A p_k} = \frac{r_k^T r_k}{p_k^T A p_k} ## Новое приближение \lt math\gt x_{k + 1} = x_{k} + \alpha_k p_k [/math]
    2. Новая невязка [math] r_{k + 1} = r_{k} - \alpha_k A p_k [/math]
    3. Вычисляем [math] \beta_k = -\frac{p_k^T A r_{k+1}}{p_k^T A p_k} = \frac{r_{k + 1}^T A r_{k+1}}{r_k^T r_k} [/math]
    4. Новый вектор направления [math] p_k = r_{k+1} + \beta_k p_k [/math]

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература