Участник:Diana Pimenova/Алгоритм Фокса умножения матриц

Материал из Алговики
Перейти к навигации Перейти к поиску

Автор: Д.В.Пименова

Содержание

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Метод Фокса - это блочный алгоритм умножения квадратных матриц. Основная его идея заключается в том, что матрицы разбиваются на части, представляющие собой подматрицы исходных матриц (разделяются как матрицы-операнды, так и результирующая). При таком разбиении данных для определения базовых подзадач за основу берутся вычисления, выполняемые над блоками. А базовой подзадачей является процедура вычисления всех элементов одного из блоков результирующей матрицы. В отличие от стандартного ленточного алгоритма, когда мы рассматриваем матрицы в виде набора строк и столбцов, такой подход хранения позволяет добиться большей локализации данных и повысить эффективность использования кэш-памяти, что дает нам уменьшение времени работы программы.[1]

1.2 Математическое описание алгоритма

Исходные данные: квадратная матрица [math]A[/math] (состоит из блоков [math]A_{ij}[/math]), квадратная матрица [math]B[/math] (состоит из блоков [math]B_{ij}[/math]).

Вычисляемые данные: квадратная матрица [math]C[/math] (состоит из блоков [math]C_{ij}[/math]).

При этом каждый блок [math]C_{ij}[/math] определяется как произведение соответствующих блоков матриц [math]A[/math] и [math]B[/math] :

[math] \begin{align} C_{ij} = \sum_{s = 0}^{q-1} A_{is} B_{sj}, \quad i \in [0, q-1],\quad j \in [0, q-1]. \end{align} [/math]


1.3 Вычислительное ядро алгоритма

Вычислительное ядро перемножения квадратных матриц методом Фокса можно составить из процедур вычисления всех элементов одного из блоков результирующей матрицы, т.е. из процедур множественных вычислений умножения блоков матрицы [math]A[/math] на блоки матрицы [math]B[/math]

[math] \begin{align} \sum_{s = 0}^{q-1} A_{is} B_{sj}, \quad i \in [0, q-1],\quad j \in [0, q-1]. \end{align} [/math]

[2]

1.4 Макроструктура алгоритма

Как уже записано в описании ядра алгоритма, основную часть умножения матриц составляют множественные вычисления произведения блоков матрицы [math]A[/math] на блоки матрицы [math]B[/math]. Перемножать блоки будем стандартным методом, используя определение произведения матриц:

[math] \begin{align} \sum_{k = 1}^{n} a_{ik} b_{kj} \end{align} [/math]


1.5 Схема реализации последовательного алгоритма

Разобьем исходные матрицы на блоки [math]A_{ij}[/math],[math]B_{ij}[/math] и [math]C_{ij}[/math] соответственно. Обнулим блоки матрицы [math]C[/math], предназначенной для хранения соответствующего результирующего произведения [math]AB[/math]. Затем запускается цикл, в ходе которого выполняется последовательное умножение блоков матриц операндов и суммирование полученных результатов.

[math] \begin{align} С_{ij} = \sum_{s = 0}^{q-1} A_{is} B_{sj}, \quad i \in [0, q-1],\quad j \in [0, q-1]. \end{align} [/math]

После завершения цикла мы получим матрицу с блоками [math]C_{ij}[/math], соответствующую произведению [math]AB[/math].[3]


1.6 Последовательная сложность алгоритма

Рассмотрим квадратные матрицы размером [math]n \times n[/math] , разбитые на блоки размера [math]\frac{n}{q}[/math] . Итого у нас получается [math]q \times q[/math]  блоков.

Для умножение данных матриц в последовательном варианте требуется по [math] n^3 [/math]  умножений и сложений.

При классификации по последовательной сложности, таким образом, алгоритм умножения матриц относится к алгоритмам с кубической сложностью.

1.7 Информационный граф

Сначала опишем идею параллельного умножения матриц методом Фокса:

  • Каждой подзадаче [math](i,j)[/math] передаются блоки [math]A_{ij}[/math], [math]B_{ij}[/math] и обнуляются блоки [math]C_{ij}[/math] на всех подзадачах.
  • Для каждой строки [math]i[/math] блок [math]A_{ij}[/math] подзадачи [math](i,j)[/math] пересылается на все подзадачи той же строки [math]i[/math] решетки.
  • Полученные в результаты пересылок блоки [math]A'_{ij}[/math], [math]B'_{ij}[/math] каждой подзадачи [math](i,j)[/math] перемножаются и прибавляются к блоку [math]C_{ij}[/math][math]: C_{ij} = C_{ij} + A'_{ij}B'_{ij} [/math].
  • блоки [math]B'_{ij}[/math] каждой подзадачи [math](i,j)[/math] пересылаются подзадачам, являющимися соседями сверху в столбцах решетки подзадач (блоки подзадач из первой строки решетки пересылаются подзадачам последней строки решетки).

1.8 Ресурс параллелизма алгоритма

Определим вычислительную сложность данного алгоритма. Пусть все матрицы являются квадратными размера [math]n \times n[/math] , количество блоков по горизонтали и вертикали являются одинаковым и равным [math] q [/math]  (т.е. размер всех блоков равен [math]k \times k[/math] , где [math]k = \frac{n}{q}[/math] ), процессоры образуют квадратную решетку и их количество равно [math]p = q^{2}[/math] .

Алгоритм Фокса требует для своего выполнения [math]q[/math]  итераций, в ходе которых каждый процессор перемножает свои текущие блоки матриц [math]A[/math]  и [math]B[/math]  и прибавляет результаты умножения к текущему значению блока матрицы [math]C[/math] . С учетом выдвинутых предположений общее количество выполняемых при этом операций будет иметь порядок [math]\frac{n^{3}}{p}[/math] .

Определим количество вычислительных операций. Сложность выполнения скалярного умножения строки блока матрицы [math]A[/math] на столбец блока матрицы [math]B[/math] можно оценить как[math]2\frac{n}{q} - 1[/math] . Количество строк и столбцов в блоках равно [math]\frac{n}{q}[/math] и, как результат, трудоемкость операции блочного умножения оказывается равной [math]\frac{\frac{n^2}{p}}{\frac{2n}{q} - 1}[/math]. Для сложения блоков требуется[math]\frac{n^{2}}{p}[/math] операций.

1.9 Входные и выходные данные алгоритма

Входные данные: матрица [math]A[/math] (элементы [math]a_{ij}[/math]), матрица [math]B[/math] (элементы [math]b_{ij}[/math])).

Объём входных данных: [math]2n^{2}[/math]

Выходные данные: матрица [math]C[/math] (элементы [math]c_{ij}[/math]).

Объём выходных данных: [math]n^{2}[/math]

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма =

2.2 Локальность данных и вычислений =

2.3 Возможные способы и особенности параллельной реализации алгоритма =

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

Возьмем квадратные матрицы размерностью [math]n \times n[/math], где [math]500\leqslant n \leqslant 2000[/math], а число процессов будем изменять от [math]2[/math] до [math]128[/math]. В качестве примера приведем время выполнения программы в зависимости от числа процессов при фиксированном размере матриц [math]n = 2000[/math].

Число процессов Время (с)
128 0.510
64 1.038
32 2.556
16 5.121
8 20.844
4 20.952
2 92.919
Fox1.jpg

Далее рассмотрим зависимость времени выполнения программы от размера матриц. Число процессов также зафиксируем: возьмем [math]64[/math] процесса.


Размер матриц Время (с)
2000 1.038
1500 0.409
1000 0.115
750 0.049
500 0.015
Fox2.jpg
Fox3.jpg

Из приведенных результатов исследования видно, что система хорошо масштабируема.

2.4.2 Характеристики программно-аппаратной среды

Все вычисления были произведены на суперкомпьютере "Ломоносов".

Для компиляции был использован компилятор языка C++ GNU 4.4.6. Использованная реализация MPI: Intel MPI 4.0.3. Опции компилятора: -lm.

Вычисления производились в очереди test. Ограничений на лимит времени на узел наложено не было.

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Ссылки на некоторые существующие реализации этого алгоритма:

[1] - центр суперкомпьютерных технологий Нижегородского Государственного Университета.

[2] - ИНТУИТ

[3] - OpenNET

3 Литература

  1. Лекции по высокопроизводительным вычислительным системам СПбГПУ, 2016.
  2. http://it.kgsu.ru/ParalAlg/palg046.html
  3. Абрамян М.Э. Лекции по основам параллельного программирования, ЮФУ, 2016.