Уровень алгоритма

Повторная прогонка, точечный вариант

Материал из Алговики
Перейти к навигации Перейти к поиску


Повторная прогонка для нового СЛАУ с трёхдиагональной матрицей,
точечный вариант
Последовательный алгоритм
Последовательная сложность [math]5n-4[/math]
Объём входных данных [math]4n-2[/math]
Объём выходных данных [math]n[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]5n-4[/math]
Ширина ярусно-параллельной формы [math]1[/math]


Основные авторы описания: А.В.Фролов

1 Свойства и структура алгоритма

Рисунок 1. Граф алгоритма повторной прогонки при n=8 без отображения входных и выходных данных. / - деление, f - операция a+bc.

1.1 Общее описание алгоритма

Повторная прогонка - часть метода прогонки в приложении к решению СЛАУ[1][2] вида[3]

[math] A = \begin{bmatrix} c_{0} & -b_{0} & 0 & \cdots & \cdots & 0 \\ -a_{1} & c_{1} & -b_{1} & \cdots & \cdots & 0 \\ 0 & -a_{2} & c_{2} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & -a_{N-1} & c_{N-1} & -b_{N-1} \\ 0 & \cdots & \cdots & 0 & -a_{N} & c_{N} \\ \end{bmatrix}\begin{bmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{N} \\ \end{bmatrix} = \begin{bmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{N} \\ \end{bmatrix} [/math]

для того случая, когда ранее уже была выполнена прогонка для СЛАУ с той же матрицей, но с другой правой частью. В этом случае та часть формул прогонки, что связана только с матрицей, уже предвычислена, и повторять её не надо.

Рисунок 2. Граф алгоритма повторной прогонки с предвычислением обратных чисел при n=8 без отображения входных и выходных данных. m - умножение на предвычисленное обратное число, f - операция a+bc.

1.2 Математическое описание алгоритма

В приведённых обозначениях в повторной прогонке сначала выполняют её прямой ход - вычисляют коэффициенты

[math] \beta_{1} = f_{0}/c_{0}, \\ \beta_{i+1} = (f_{i}+a_{i}\beta_{i})/(c_{i}-a_{i}\alpha_{i}), \quad i = 1, 2, \cdots , N. [/math]

после чего вычисляют решение с помощью обратного хода

[math] y_{N} = \beta_{N+1}, \\ y_{i} = \alpha_{i+1} y_{i+1} + \beta_{i+1}, \quad i = N-1, N-2, \cdots , 1, 0. [/math]

В литературе[3] указывается, что данные формулы эквивалентны вычислению решений двухдиагональных систем методом обратной подстановки в условиях предвычисленного [math]LU[/math]-разложения матрицы системы.

1.3 Вычислительное ядро алгоритма

Вычислительное ядро алгоритма можно представить из двух частей - прямого и обратного хода. В прямом ходе ядро составляют последовательности операций умножения и сложения (последних вдвое меньше). В обратном ходе в ядре тоже только последовательности умножения и сложения, но в равном количестве.

1.4 Макроструктура алгоритма

Макроструктура алгоритма - совокупность прямого и обратного хода.

1.5 Схема реализации последовательного алгоритма

Последовательность исполнения метода следующая:

1. Инициализируется прямой ход прогонки:

[math] \beta_{1} = f_{0}/c_{0}, \\ [/math]

2. Последовательно для всех i от 1 до N-1 выполняются формулы прямого хода:

[math] \beta_{i+1} = (f_{i}+a_{i}\beta_{i})/(c_{i}-a_{i}\alpha_{i}). [/math]

3. Инициализируется обратный ход прогонки:

[math] y_{N} = (f_{N}+a_{N}\beta_{N})/(c_{N}-a_{N}\alpha_{N}) [/math]

4. Последовательно для всех i с убыванием от N-1 до 0 выполняются формулы обратного хода:

[math] y_{i} = \alpha_{i+1} y_{i+1} + \beta_{i+1}. [/math]

Для быстрейшей работы повторной прогонки все деления в формулах заменяются умножением на предвычисленные обратные числа ([math]1/c_{0}[/math] и [math]1/(c_{i}-a_{i}\alpha_{i})[/math].

1.6 Последовательная сложность алгоритма

Для выполнения прогонки в трёхдиагональной СЛАУ из n уравнений с n неизвестными в последовательном (наиболее быстром, с предвычислением обратных чисел) варианте требуется:

  • [math]2n-2[/math] сложений,
  • [math]3n-2[/math] умножений.

При классификации по последовательной сложности, таким образом, повторная прогонка относится к алгоритмам с линейной сложностью.

1.7 Информационный граф

Информационный граф прогонки без предвычисления обратных чисел изображён на рис.1. Как видно, он последователен. Левая ветвь соответствует прямому, правая - обратному ходу. По рисунку видно, что не только математическая суть обработки элементов векторов, но даже структура графа алгоритма и направление потоков данных в нём вполне соответствуют названию "обратный ход". Вариант с заменой делений на умножения даёт граф, который изображён на рис.2.

1.8 Описание ресурса параллелизма алгоритма

Для выполнения прогонки в трёхдиагональной СЛАУ из n уравнений с n неизвестными в параллельном варианте требуется последовательно выполнить следующие ярусы:

  • [math]n[/math] ярусов умножений (в каждом из ярусов по одному умножению),
  • по [math]2n - 2[/math] ярусов умножений и сложений (все ярусы - по одной операции).

При классификации по высоте ЯПФ, таким образом, повторная прогонка относится к алгоритмам со сложностью [math]O(n)[/math]. При классификации по ширине ЯПФ его сложность будет [math]1[/math].

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности, как хорошо видно, является константой (причём это единица).

При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных – тоже константа.

Алгоритм в рамках выбранной версии полностью детерминирован.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

В зависимости от нужд вычислений, возможны как разные способы хранения разложения матрицы СЛАУ, так и разные способы хранения вычисляемых коэффициентов.

2.2 Локальность данных и вычислений

Как видно по графу алгоритма, локальность данных по пространству хорошая - все аргументы, что нужны операциям, вычисляются "рядом". Однако по времени локальность вычислений не столь хороша. Если данные задачи не помещаются в кэш, то вычисления в "верхнем левом углу" СЛАУ будут выполняться с постоянными промахами кэша. Отсюда может следовать одна из рекомендаций использующим прогонку - организовать все вычисления так, что бы прогонки были "достаточно коротки" для помещения данных в кэш.

2.3 Возможные способы и особенности параллельной реализации алгоритма

Как видно по графу алгоритма, его практически (без видоизменений) невозможно распараллелить. Поэтому есть два способа использования повторных прогонок для параллельных вычислительных систем: либо разбивать задачу, где используются прогонки, так, чтобы их было достаточно, чтобы на каждую из повторных прогонок приходился 1 процессор (1 ядро), либо использовать вместо прогонки её параллельные заменители (метод Стоуна, циклическую редукцию, последовательно-параллельные варианты и т.п.). Естественно, будет хорошо распараллеливаться вариант, когда все правые части СЛАУ известны сразу, и когда их много. Тогда каждая повторная прогонка будет вычисляться на отдельном узле вычислительной системы.

2.4 Масштабируемость алгоритма и его реализации

О масштабируемости самой повторной прогонки, как непараллельного алгоритма, говорить нельзя в принципе. Однако необходимо указать на то, что сравнение параллельных заменителей прогонки при изучении их масштабируемости должно идти не с однопроцессорными вариантами этих заменителей, а с выполнением на 1 процессоре самой повторной прогонки.

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

Повторная прогонка - метод для архитектуры классического, фон-неймановского типа. Для распараллеливания решения СЛАУ с трёхдиагональной матрицей следует взять какой-либо её параллельный заменитель, например, наиболее распространённую циклическую редукцию, или уступающий ей по критическому пути, но имеющий более регулярную структуру графа новый последовательно-параллельный метод.

2.7 Существующие реализации алгоритма

3 Литература

  1. Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
  2. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.
  3. 3,0 3,1 Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.