Алгоритм Теруи-Кашивабары-Ханаоки

Материал из Алговики
Перейти к навигации Перейти к поиску

1 Свойства и структура алгоритма

1.1 Математическое описание алгоритма

Алгоритм Теруи-Кашивабары-Ханаоки [1] использует параллельные вычисления для решения задачи SVP. В основу алгоритма лег алгоритм Фукаши-Кашивабары[2].

1.1.1 Глобальные хранилища векторов

Для корректной работы алгоритма требуется два глобальных хранилища векторов, доступ к которым будут иметь все процессы. Первое из них назовем глобальным хранилищем запасных векторов, а второе - глобальным хранилищем соединительных векторов.

1.1.2 Генерация векторов решетки

На вход принимается базис решетки B и набор представлений в виде натуральных чисел векторов решетки. Далее генерируется набор векторов из данной решетки, которые соответствуют описанным выше представлениям. При этом понятно, что для разных базисов одной и той же решетки при одном и том же наборе представлений в виде натуральных чисел, будут сгенерированы разные вектора.

1.1.3 Редукция базиса

В алгоритме редукции базиса на вход поступают базис решетки B, набор S' представлений в виде натуральных чисел, целые числа \ell_{\mathrm{fc}}, \ell_{\mathrm{lc}} , вещественные значения \delta_{\mathrm{stock}}, \delta, \delta', \delta'' и целочисленное значение pui (process-unique information).

До начала работы алгоритма заводится массив переменных \delta'_i, i =\ell_{\mathrm{lc}} + 1, \ldots, n все элементы которого изначально равны \delta'.

На первом шаге генерируется набор векторов решетки V по набору S' и для каждого \vec{v} \in V вычисляется \delta_{\mathrm{stock}}-индекс вставки равный i. Если таковой удовлетворяет условию 1 \le i \le \ell_{\mathrm{fc}}, то вектор \vec{v} записывается в глобальное хранилище запасных векторов. Далее, по V строится набор V' = (\vec{v_1}, \ldots, \vec{v_N}), для всех векторов которого \delta-индекс вставки больше \ell_{\mathrm{lc}}.

На следующем шаге производится модификация исходного базиса решетки. Исходный базис B сохраняется в переменной B'. После чего ищется вектор \vec{v_i} \in V' для которого выполнены условия:

j = h_{\delta'_{j}}(\vec{v}) \text{ где }\ell_{\mathrm{lc}} \lt j \le n,
\| \vec{b_{j}^{*}} \|^2 - \| \pi_{B, i}(\vec{v_i}) \|^2 \rightarrow \max.

Если такой \vec{v_i} не найден, то алгоритм переходит к следующему шагу. Иначе к B применяется \delta-LLL алгоритм[3] по индексу j c вектором \vec{v_i}. Далее обновляются значения \delta'_k, {k = \ell_{\mathrm{lc}} + 1, \ldots, n} по следующим правилам:

\delta'_{k} = \delta'_{k} - \delta'' \text{ для всех } k = \ell_{\mathrm{lc}} + 1, \ldots, j - 1,
\delta'_{k} = \delta' \text{ для всех } k = j, \ldots, n.

Если (i + \text{pui}) \bmod N \equiv 0, то выполняется переход к шагу 3. В противном случае, к модифицированному базису B снова применяется шаг 2.

На третьем шаге проверяется условие B = B'. В случае успеха алгоритм завершает свою работу с результатом B. В противном случае алгоритм продолжает свою работу с шага 1.

1.1.4 Алгоритм Теруи-Кашивабары-Ханаоки

На вход алгшоритма поступют базис решетки B, наборы S и S' представлений в виде натуральных чисел, целые числа \ell_{\mathrm{fc}}, \ell_{\mathrm{lc}}, \ell_{\mathrm{link}}, вещественные значения \delta_{\mathrm{stock}}, \delta, \delta', \delta'', \Theta и целочисленное значение pui (process-unique information).

На первом шаге алгоритма в переменную B' сохраняется исходный базис B. После чего к B применяется алгоритм редукции базиса. Далее, генерируется набор векторов решетки V по базису B и набору представлений в виде натуральных чисел S. Для каждого \vec{v} \in V вычисляется \delta_{\mathrm{stock}}-индекс вставки равный i. Если таковой удовлетворяет условию 1 \le i \le \ell_{\mathrm{fc}}, то вектор \vec{v} записывается в глобальное хранилище запасных векторов.

На втором шаге вычисляется следующая оценочная функция:

\mathrm{Eval}(B, \Theta) = \sum_{i = 1}^{n} \Theta^{i} \| \vec{b_{i}^{*}} \|^2.

После чего базис B модифицируется так, чтобы функция \mathrm{Eval}(B, \Theta) достигала на нем своего минимума. Чтобы этого достичь, к B применяется алгоритм \delta-LLL[4]по индексу i с вектором \vec{v}, где \vec{v} - вектор из глобального хранилища запасных векторов, для которого выполнено {h_{\delta_{\mathrm{stock}}}(\vec{v}) = i \le \ell_{\mathrm{fc}}}.

На третьем шаге сохраняем базисные вектора с индексами от 1 до \ell_\mathrm{link} в глобальное хранилище соединительных векторов. Далее выгружаем все глобальное хранилище соединительных векторов. Из векторов хранилища и векторов базиса B собираем наименьший базис решетки B'' в лексикографическом порядке. Затем заменяем базис B базисом B''. Если существует вектор \vec{v} из глобального хранилища запасных векторов такой, что \| \vec{v} \| \lt 1.05 \cdot (\Gamma(n / 2 + 1) \cdot \det(\Lambda))^{1 / n} / \sqrt{\pi}, то алгоритм возвращает вектор \vec{v}. Если B' = B, то алгоритм возвращает базис B. В противном случае алгоритм продолжает свою работу с шага 1.

2 Литература

  • Parallel
  • NNR
  • LLL
  • LLL