Уровень алгоритма

Определение диаметра графа

Материал из Алговики
Версия от 10:05, 7 июля 2022; ASA (обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к навигации Перейти к поиску


1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Диаметром неориентированного графа называется максимальная длина кратчайшего пути между двумя вершинами. Классический способ определения диаметра – выполнить поиск в ширину от всех вершин, тогда диаметр равен максимальному из найденных расстояний. Сложность такого подхода составляет [math]O(mn)[/math], и в худшем случае (например, когда граф является циклом) эту оценку, по-видимому, улучшить нельзя.

Алгоритм iFUB[1] (англ. iterative Fringe Upper Bound) позволяет уменьшить количество вызовов алгоритма поиска в ширину. Для многих реальных графов будет достаточно всего нескольких вызовов и общая сложность будет близка к линейной [math]O(m)[/math].

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

Последовательная сложность алгоритма iFUB равна [math]O(Bm)[/math], где [math]B[/math] – число вызовов алгоритма поиска в ширину, сложность каждого вызова [math]O(m)[/math]. В худшем случае (граф является циклом) [math]B = n[/math] и общая сложность равна [math]O(mn)[/math], однако для многих реальных графов [math]B = O(1)[/math] и общая сложность составляет [math]O(m)[/math].

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные: неориентированный граф [math](V, E)[/math] ([math]n[/math] вершин [math]v_i[/math] и [math]m[/math] рёбер).

Объём входных данных: [math]O(m + n)[/math].

Выходные данные: диаметр графа [math](V, E)[/math].

Объём выходных данных: [math]O(1)[/math].

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Возможные способы и особенности параллельной реализации алгоритма

2.3 Результаты прогонов

2.4 Выводы для классов архитектур

3 Литература

  1. Crescenzi, Pilu, Roberto Grossi, Michel Habib, Leonardo Lanzi, and Andrea Marino. “On Computing the Diameter of Real-World Undirected Graphs.” Theoretical Computer Science 514 (November 2013): 84–95. doi:10.1016/j.tcs.2012.09.018.