Алгоритм сдваивания Стоуна для LU-разложения трёхдиагональной матрицы
Алгоритм сдваивания Стоуна для LU-разложения трёхдиагональной матрицы | |
Последовательный алгоритм | |
Последовательная сложность | [math]3(n-1)\lceil \log_2 (n-1) \rceil + o((n-1)\lceil \log_2 (n-1) \rceil)[/math] |
Объём входных данных | [math]3n-2[/math] |
Объём выходных данных | [math]2n-1[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math]2 \lceil \log_2 (n-1) \rceil + 3[/math] |
Ширина ярусно-параллельной формы | [math]n[/math] |
Основные авторы описания: А.В.Фролов
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм сдваивания Стоуна для LU-разложения трёхдиагональной матрицы - часть метода сдваивания Стоуна для решения СЛАУ[1][2] вида [math]Ax = b[/math], где
- [math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \\ \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \\ \end{bmatrix} [/math]
Метод сдваивания Стоуна впервые предложен в начале 70-х гг. 20го века[3] в качестве альтернативы другим параллельным алгоритмам решения трёхдиагональных СЛАУ, например, методу циклической редукции.
Здесь рассматривается его первая часть - [math]LU[/math]-разложение. Оно состоит в представлении матрицы
- [math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix} [/math]
в виде произведения матриц
- [math] L = \begin{bmatrix} 1 & 0 & 0 & \cdots & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & \cdots & 0 \\ 0 & l_{32} & 1 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & l_{n-1 n-2} & 1 & 0 \\ 0 & \cdots & \cdots & 0 & l_{n n-1} & 1 \\ \end{bmatrix} [/math]
и
- [math] U = \begin{bmatrix} u_{11} & u_{12} & 0 & \cdots & \cdots & 0 \\ 0 & u_{22} & u_{23}& \cdots & \cdots & 0 \\ 0 & 0 & u_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & u_{n-1 n-1} & u_{n-1 n} \\ 0 & \cdots & \cdots & 0 & 0 & u_{n n} \\ \end{bmatrix} [/math]
Важным моментом является то, что в условиях точных вычислений алгоритм сдваивания Стоуна вычисляет то же самое разложение, что и компактная схема метода Гаусса.
Теоретически метод Стоуна основан на том, что, если ввести величины [math]q_i[/math] так, что [math]q_0 = 1[/math], [math]q_1 = a_{11}[/math] и [math]q_i = a_{ii} q_{i-1} - a_{ii-1}a_{i-1i} q_{i-2}[/math], то после вычисления всех [math]q_i[/math] легко вычислить все [math]u_{ii} = q_i/q_{i-1}[/math], [math]l_{ii-1} = a_{ii-1}/u_{i-1i-1}[/math]. При этом не нужно вычислять [math]u_{ii+1} = a_{ii+1}[/math].
Вычисление всех [math]q_i[/math] производится с использованием ассоциативности матричного умножения. Из рекуррентной связи [math]q_i = a_{ii} q_{i-1} - a_{ii-1}a_{i-1i} q_{i-2}[/math] следует матричное равенство
- [math] \begin{bmatrix} q_i \\ q_{i-1} \\ \end{bmatrix} = \begin{bmatrix} a_{ii} & -a_{ii-1}a_{i-1i} \\ 1 & 0 \\ \end{bmatrix} \begin{bmatrix} q_{i-1} \\ q_{i-2} \\ \end{bmatrix} = T_i \begin{bmatrix} q_{i-1} \\ q_{i-2} \\ \end{bmatrix} = T_i T_{i-1}...T_2 \begin{bmatrix} q_{1} \\ q_{0} \\ \end{bmatrix} = T_i T_{i-1}...T_2 \begin{bmatrix} a_{11} \\ 1 \\ \end{bmatrix} [/math]
Произведения матриц [math]T_i T_{i-1}...T_2[/math] вычисляются параллельной схемой сдваивания. При этом благодаря тому, что вторая строка всех матриц [math]T_i[/math] равна первой строке единичной матрицы, вторая строка произведения [math]T_i T_{i-1}...T_k[/math] совпадает с первой строкой произведения [math]T_{i-1}...T_k[/math], что позволяет сэкономить вычисления вдвое против перемножения неособенных матриц этого же порядка.
1.2 Математическое описание алгоритма
Вначале полагается для всех [math]i[/math] от 2 до [math]n[/math]
[math]p_i = a_{ii}, r_i = -a_{ii-1}a_{i-1i}[/math],
а также
[math]p_1 = 0, r_1 = 1[/math].
Затем вычисления на каждом шаге (номер шага обозначим [math]k[/math]) ведутся так:
начиная с [math]i[/math] с 2, пропускают [math]2^{k-1}[/math] чисел, а потом для [math]2^{k-1}[/math] чисел берут ближайшее для них снизу [math]j[/math] вида [math]j = 1 + 2^{k} m [/math].
Для первого шага перевычисляются новые значения [math]p_i, r_i[/math] по формулам: [math]p^{new}_i = p_i p_{i-1}, r^{new}_i = p_i r_{i-1} + r_i[/math], а для остальных шагов - по формулам [math]p^{new}_i = p_i p_{j}+r_i p_{j-1}, r^{new}_i = p_i r_{j} + r_i r_{j-1}[/math].
Затем опять пропускают [math]2^{k-1}[/math] чисел, повторяют для [math]2^{k-1}[/math] чисел такие же вычисления, и так до исчерпания диапазона всего значений [math]i[/math] от 2 до [math]n[/math].
Шаги повторяют до тех пор, пока не оказывается, что нужно пропустить все значения [math]i[/math] от 2 до [math]n[/math]. После этого выполняют вычисления
[math]q_i = p_i a_{11} + r_i[/math] для всех [math]i[/math] от 1 до [math]n[/math] и затем [math]u_{ii} = q_i/q_{i-1}[/math], [math]l_{ii-1} = a_{ii-1}/u_{i-1i-1}[/math] для всех [math]i[/math] от 2 до [math]n[/math].
1.3 Вычислительное ядро алгоритма
Вычислительное ядро алгоритма составляют в основной части операции типа [math]ab+cd[/math] и [math]ab+c[/math], с небольшой добавкой отдельных умножений и делений. Изолированные длинные ветви вычислений отсутствуют.
1.4 Макроструктура алгоритма
На макроуровне можно выделить такие 4 макрооперации: вычисление элементов матриц [math]T_i[/math], вычисление сдваиванием произведений матриц [math]T_{i}[/math], вычисление результатов.
1.5 Схема реализации последовательного алгоритма
Метод Стоуна изначально спроектирован для параллельного исполнения, поскольку является по отношению к, например, классической прогонке, алгоритмом с избыточными вычислениями. Смысла в его последовательной реализации нет ещё и из-за того, что он неустойчив.
1.6 Последовательная сложность алгоритма
Для полного выполнения алгоритма Стоуна и получения разложения трёхдиагональной матрицы на две двудиагональные нужно выполнить:
- [math]2n-2[/math] делений,
- [math]2(n-1)\lceil \log_2 (n-1) \rceil + o((n-1)\lceil \log_2 (n-1) \rceil)[/math] умножений,
- [math](n-1)\lceil \log_2 (n-1) \rceil +o((n-1)\lceil \log_2 (n-1) \rceil)[/math] сложений.
Поэтому алгоритм должен быть отнесён к алгоритмам линейно-логарифмической сложности по количеству последовательных операций.
1.7 Информационный граф
Как уже отмечено, макроструктура алгоритма состоит из 4 частей.
В первой части производится вычисление недиагональных элементов матриц [math]T_{i}[/math].
Во второй части - вычисление сдваиванием произведений матриц [math]T_{i}[/math], оно показано на рисунке 1 и использует результаты 1й части.
В третьей, последней, части - вычисление результатов, с использованием результатов 2й части.
Внутренние графы 1й и 3й частей - пусты, их операции в зависимости только со 2й частью.
1.8 Ресурс параллелизма алгоритма
На критическом пути алгоритма Стоуна для LU-разложения трёхдиагональной матрицы нужно выполнить:
- [math]1[/math] ярус делений,
- [math]\lceil \log_2 (n-1) \rceil+1[/math] ярусов умножений,
- [math]\lceil \log_2 (n-1) \rceil+1[/math] ярусов сложений.
Поэтому алгоритм должен быть отнесён к алгоритмам логарифмической сложности по количеству последовательных операций. Ширина яруса равна [math]n[/math], поэтому алгоритм должен быть отнесён к алгоритмам линейной сложности по ширине ярусов.
1.9 Входные и выходные данные алгоритма
Входные данные: трёхдиагональная матрица [math]A[/math] (элементы [math]a_{ij}[/math]).
Объём входных данных: [math]3n-2[/math]. В разных реализациях размещение для экономии хранения может быть выполнено разным образом. Например, каждая диагональ может быть строкой массива.
Выходные данные: нижняя двухдиагональная матрица [math]L[/math] (элементы [math]l_{ij}[/math], причём [math]l_{ii}=1[/math]) и верхняя двухдиагональная матрица [math]U[/math] (элементы [math]u_{ij}[/math]).
Объём выходных данных: формально [math]3n-2[/math]. Однако благодаря совпадению [math]n[/math] входных и выходных данных реально вычисляется лишь [math]2n-2[/math] элементов.
1.10 Свойства алгоритма
Соотношение последовательной и параллельной сложности, как хорошо видно, равно [math]O(n)[/math].
При этом вычислительная мощность алгоритма как отношение числа операций к суммарному объему входных и выходных данных является логарифмической.
Алгоритм в рамках выбранной версии полностью детерминирован.
Устойчивость алгоритма остаётся только при условии невозрастания ведущих главных миноров матрицы. При росте миноров область устойчивости алгоритма очень мала.
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
Из-за большой избыточности вычислений алгоритм сдваивания Стоуна никогда не предназначался для последовательной реализации. После обнаружения его неустойчивости стало ясно, что и в будущем он не будет реализован на последовательных архитектурах.
2.2 Возможные способы и особенности параллельной реализации алгоритма
Из-за неустойчивости алгоритма любые способы реализации теряют смысл.
Хотя исследование локальности и не имеет смысла из-за неустойчивости, можно сказать, что, как видно по графу алгоритма, ряд дуг длинны как по времени (по различию номеров ярусов операций, являющихся началом и концом дуги), так и по пространству (исключением является только размещение в гиперкубе, физически невозможное). Эта неустранимая нелокальность должна тормозить исполнение алгоритма. Реальное же исследование последовательного кода на обращения в память проводить бессмысленно, поскольку последовательный код не применяется и не будет применяться никем.
Из-за неустойчивости алгоритма не имеют смысла любые замеры эффективности любых его реализаций и их динамических характеристик. Кроме того, из-за избыточности вычислений ясно, что реальная эффективность будет существенно ограничена даже при малых размерах задач, где неустойчивость ещё не сказывается.
Из-за неустойчивости алгоритма его не используют на практике, поэтому планировавшаяся в исходной публикации[3] замена более популярной циклической редукции не удалась.
2.3 Выводы для классов архитектур
На области относительно приемлемых ошибок (малые размеры задач) у метода всё равно нет шансов на нормальную реализацию - быстрее будет СЛАУ прогонкой на обычной персоналке решить.
3 Литература
- ↑ Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
- ↑ Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.
- ↑ 3,0 3,1 Stone H.S. An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of Equations // J. ACM, Vol. 20, No. 1 (Jan. 1973), P. 27-38.