Уровень алгоритма

Двоичный поиск

Материал из Алговики
Перейти к навигации Перейти к поиску


Бинарный поиск
Последовательный алгоритм
Последовательная сложность [math]\log_2 n[/math]
Объём входных данных упорядоченный массив длины [math]n[/math], число [math]A[/math]
Объём выходных данных индекc элемента
Параллельный алгоритм
Высота ярусно-параллельной формы ?
Ширина ярусно-параллельной формы ?

Основные авторы описания: А. В. Чупин.

Синонимы названия метода: двоичный поиск, бинарный поиск, метод деления пополам, дихотомия.

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод двоичного поиска используется в качестве быстрого варианта поиска в заранее отсортированном массиве. Получил распространение благодаря как наименьшей из возможных высоте алгортима, так и из-за ряда своих вычислительных характеристик, а также (в среде нечисленных алгоритмов) из-за своей рекурсивности, то есть лёгкости записи.

1.2 Математическое описание алгоритма

Исходные данные: одномерный массив [math]n[/math] чисел, упорядоченный по возрастанию (точнее - неубыванию) или убыванию (точнее - невозрастанию), а также число [math]A[/math], которое нужно найти в этом массиве.

Вычисляемые данные: индекс элемента, равного искомому (или ответ, что такого элемента нет).

Формулы метода: элементы на каждом этапе алгоритма рассматриваются в виде непрерывного отрезка массива. В каждой из пар находится сумма составляющих её элементов. На следующем этапе на пары разбиваются уже эти суммы (и те элементы, которые не вошли в уже вычисленные суммы), и т. д.

1.3 Вычислительное ядро алгоритма

Вычислительное ядро последовательно-параллельного метода суммирования можно составить как из операций сравнения и получения середины отрезка, так и (рекуррентно) из набора реализаций метода бинарного поиска в массиве меньшего размера.

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные: массив [math]x[/math] (элементы [math]x_i[/math]). Число [math]A[/math].

Дополнительные ограничения: массив упорядочен.

Объём входных данных: [math]n[/math].

Выходные данные: индекс элемента [math]A[/math] в массиве, если он есть.

Объём выходных данных: один скаляр.

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

Обычно в качестве ответа выводят -1, если число не найдено.

2.2 Локальность данных и вычислений

2.2.1 Локальность реализации алгоритма

2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности
2.2.1.3 Анализ на основе теста Apex-Map

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

2.4.2 Масштабируемость реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература