Уровень алгоритма

Участник:Смирнова Александра/Нахождение собственных чисел квадратной матрицы методом QR разложения (3)

Материал из Алговики
Перейти к навигации Перейти к поиску


Нахождение собственных чисел квадратной матрицы методом QR разложения
Последовательный алгоритм
Последовательная сложность -
Объём входных данных [math] n^2 [/math]
Объём выходных данных [math] n [/math]
Параллельный алгоритм
Высота ярусно-параллельной формы -
Ширина ярусно-параллельной формы -


Основные авторы описания: Смирнова А.С., Киямова А.


Задача нахождения собственных значений и собственных векторов для матрицы [math]A[/math] заключается в поиске таких чисел [math]\lambda[/math], которые удовлетворяют уравнению:

[math]Ax=\lambda x[/math], при этом, числа [math]\lambda[/math] называются собственными значениями, а вектора [math]x[/math] - собственными векторами

Данная задача является одной из важнейших задач линейной алгебры. Собственные вектора и собственные значения применяются в различных областях науки: в аналитической геометрии, при решении систем интегральных уравнений, в математической физике. Однако не существует простых алгоритмов прямого вычисления собственных значений для матриц в общем случае, поэтому данная задача на практике решается численными методами. Одним из таких методов является QR-алгоритм.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

QR-алгоритм — это численный метод в линейной алгебре, предназначенный для решения полной проблемы собственных значений, то есть отыскания всех собственных чисел и собственных векторов матрицы. Был разработан в конце 1950-х годов независимо В. Н. Кублановской(Россия) и Дж. Фрэнсисом(Англия). Открытию QR-алгоритма предшествовал LR-алгоритм, который использовал LU-разложение вместо QR-разложения. В настоящее время LR-алгоритм используется очень редко ввиду своей меньшей эффективности, однако он был важным шагом на пути к открытию QR-алгоритма.

Суть базового QR-алгоритма заключается в итерационном приведении матрицы [math]A[/math] к некоторой подобной ей матрице [math]A_N[/math] при помощи QR-разложения. Матрица [math]A_N[/math] является правой верхней треугольной матрицей, а значит ее диагональ содержит собственные значения. В силу подобия матриц [math]A[/math] и [math]A_N[/math] их наборы собственных значений совпадают. Таким образом задача поиска собственных значений матрицы [math]A[/math] сводится к задаче выведения матрицы [math]A_N[/math] и поиска собственных значений для нее, что является тривиальной задачей.

Однако базовый QR-алгоритм может обладать очень низкой скоростью сходимости, поэтому существуют несколько способов ускорить его:

  • Перед итерациями привести матрицу [math]A[/math] к подобной ей матрице [math]A_H[/math], которая будет иметь форму Хессенберга. Данный шаг позволит ускорить процесс QR-разложения
  • Использовать QR-алгоритм со сдвигами

В данной статье будет рассмотрен только базовый QR-алгоритм.

1.2 Математическое описание алгоритма

Пусть матрица [math]A[/math] - матрица, для которой мы хотим найти собственные значения. Тогда итерационный процесс строится следующим образом:

  1. [math]A_0=A[/math]
  2. Пусть имеется матрица [math]A_k[/math], тогда матрица [math]A_{k+1}[/math] строится следующим образом:
  • Строится QR-разложение: [math]A_k=Q_kR_k[/math]
  • Вычисляется [math]A_{k+1}=R_kQ_k[/math]

Заметим, что [math]A_{k+1}=R_kQ_k={Q_{k}^{-1}}Q_kR_kQ_k={Q_{k}^{-1}}A_kQ_k={Q_{k}^{T}}A_kQ_k[/math]

Таким образом матрицы [math]A_{k+1}[/math] и [math]A_{k}[/math] подобны для [math]\forall k[/math], а значит, в силу транзитивности подобия, все матрицы [math]A_{k}[/math] подобны матрице [math]A[/math] и имеют одинаковый набор собственных значений.

1.2.1 Сходимость алгоритма

Предположим, что для [math]\forall m[/math] выполнены следующие условия:

1. [math]A=X\Lambda X^{-1}[/math], где [math]\Lambda =\begin{bmatrix} \Lambda_1 & 0\\ 0 & \Lambda_2 \end{bmatrix}, \Lambda_1\in\mathbb{C}^{m\times m},\Lambda_2\in\mathbb{C}^{r\times r} [/math]


2. [math]\left | \lambda_1 \right | \geq ...\geq \left | \lambda_m \right | \gt \left | \lambda_{m+1} \right | \geq ...\geq \left | \lambda_{m+r} \right | \gt 0 [/math], где [math]\{\lambda_1,...,\lambda_m\} = \lambda(\Lambda_1), \{\lambda_{m+1},...,\lambda_{m+r}\} = \lambda(\Lambda_2) [/math]


3. Ведущая подматрица порядка [math]m[/math] в [math]X^{-1}[/math] невырождена


Тогда при [math] k \rightarrow \infty [/math] последовательность матриц [math]A_k[/math] сходится к матрице с верхней треугольной формой.

Таким образом, на практике необходимо выполнять итерации до тех пор пока матрица [math]A_k[/math] не станет треугольной (также можно продолжать выполнять их пока искомая матрица не будет найдена с некоторой заранее заданной точностью [math]\varepsilon[/math]). Если итерации закончились на шаге [math]N[/math], то числа на диагонали матрицы [math]A_N[/math] будут считаться собственными значениями матрицы [math]A[/math]

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные:

квадратная вещественная плотная матрица [math]A[/math]: [math]A \in \R^{n \times n}[/math]

Объем входных данных:

[math]n^2[/math] (необходимо хранить все элементы матрицы)

Выходные данные:

собственные значения матрицы [math]A[/math]

Объем выходных данных:

[math]n[/math] (квадратная матрица размера [math]n \times n[/math] имеет ровно [math]n[/math] собственных значений при этом некоторые из них могут быть комплексными)

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Масштабируемость алгоритма и его реализации

2.2 Существующие реализации алгоритма