Участник:Почернина Елена/Метод Якоби вычисления сингулярных чисел и векторов
Метод Якоби вычисления сингулярных чисел и векторов | |
Последовательный алгоритм | |
Последовательная сложность | O(n^3) |
Объём входных данных | |
Объём выходных данных | |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | |
Ширина ярусно-параллельной формы |
Авторы статьи: Почернина Елена (группа 601), Костюкова Светлана (группа 601)
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Метод Якоби для вычисления сингулярных чисел и векторов является самым медленным из имеющихся алгоритмов поиска сингулярных чисел и векторов, но тем не менее, интерес к нему сохраняется. Для некоторых некоторых типов матриц G он способен вычислять сингулярные числа и векторы намного точнее, чем другие методы. В частности, метод Якоби вычисляет сингулярные числа матрицы G с высокой точностью, если G может быть представлена в виде G = DX, где D – диагональная матрица, а X – хорошо обусловлена. В этом случае заданная матрица обрабатывается без предварительного приведения к двухдиагональному виду, в то время как другие алгоритмы включают в себя приведение матрицы к двухдиагональной форме, из-за чего и теряют все верные разряды во всех сингулярных числах, кроме старшего.
1.2 Математическое описание алгоритма
Исходные данные: матрица G (элементы g_{ij}, i, j = 1, \ldots, n).
Вычисляемые данные: матрица \Sigma = diag(\sigma_{i}), где \sigma_{i} - сингулярные числа, U - матрица левых сингулярных векторов, V - матрица правых сингулярных векторов.
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
Метод можно описать следующим образом:
repeat for [math]j=1[/math] to [math]n-1[/math] for [math]k=j+1[/math] to [math]n[/math] обратиться к процедуре One-Sided-Jacobi-Rotation[math](G,j,k)[/math] end for end for пока [math]G^TG[/math] не станет достаточно близка к диагональной матрице Положить [math]\sigma_{i} = ||G(:,i)||_2 [/math] (норма [math]i[/math]-го столбца в [math]G[/math]) Положить [math]U = [u_{1},\dots, u_{n}][/math], где [math]u_{i} = G(:,i)/\sigma_{i}[/math] Положить [math]V = J[/math], где [math]J[/math] - накопленное произведение вращений Якоби.
Метод Якоби для нахождения сингулярных чисел и векторов матрицы G также использует метод односторонних вращений (процедура One-Sided-Jacobi-Rotation). Алгоритм выглядит следующим образом:
proc One-Sided-Jacobi-Rotation[math](G,j,k)[/math] вычислить [math]a_{jj} = (G^TG)_{jj}, a_{jk} = (G^TG)_{jk}[/math] и [math]a_{kk} = (G^TG)_{kk}[/math] if [math]|a_{jk}|[/math] не слишком мал [math] \begin{align} \tau &= {a_{jj} - a_{kk}}/{2a_{jk}} \\ t &= {sign(\tau)}/(|\tau| + \sqrt{1 + \tau^2}) \\ c &= 1/(\sqrt{1 + t^2}) \\ s &= ct \\ G &= GR(j,k,\theta)\end{align}[/math] if нужны правые сингулярные векторы [math]J = JR(j,k,\theta)[/math] end if end if
1.6 Последовательная сложность алгоритма
Для вычисления сингулярных чисел и векторов матрицы порядка n в последовательном варианте требуется:
- делений,
- сложений (вычитаний),
- умножений.
Метод Якоби вычисления сингулярных чисел и векторов при классификации по последовательной сложности относится к алгоритмам с кубической сложностью.
1.7 Информационный граф
Опишем граф алгоритма как аналитически, так и в виде рисунка.
Первая группа вершин расположена в двумерной области, соответствующая ей операция - вычисление a_{jj}, a_{jk}, a_{kk}. Естественно введённые координаты области таковы:
- j — меняется в диапазоне от 1 до n-1, принимая все целочисленные значения;
- k — меняется в диапазоне от j+1 до n, принимая все целочисленные значения.
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
Входные данные: плотная матрица G (элементы g_{ij}). Дополнительные ограничения:
- A= G^TG – симметрическая матрица, т. е. a_{ij}= a_{ji}, i, j = 1, \ldots, n.
Объём входных данных: n^2
Выходные данные: матрица \Sigma = diag(\sigma_{i}), где \sigma_{i} - сингулярные числа, матрица U левых сингулярных векторов и матрица V правых сингулярных векторов.
Объём выходных данных: 2n^2 + n
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Масштабируемость алгоритма и его реализации
2.2 Существующие реализации алгоритма
Метод Якоби нахождения сингулярных значений и векторов реализован в пакете LAPACK. В связи с тем, что алгоритм считается медленным, он не включен во многие известные пакеты.
3 Литература
1. Дж. Деммель Вычислительная линейная алгебра. Изд. Мир, 2001.