Участница:Tameeva.a/Метод Якоби вычисления собственных значений симметричной матрицы

Материал из Алговики
Перейти к навигации Перейти к поиску

1 ЧАСТЬ. Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Метод Якоби вычисления собственных значений симметричной матрицы — итерационный алгоритм, названный в честь предложившего его в 1846 году Карла Густава Якоба Якоби. Исторически старейший метод для решения проблемы собственных значений получил широкое применение только в 1950-х годах с появлением компьютеров. Преимуществом метода является более точное вычисление малых собственных значений по сравнению с конкурирующими алгоритмами.

Суть алгоритма — приведение симметрической матрицы к диагональной с собственными значениями на диагонали путем вращения.

1.2 Математическое описание алгоритма

Исходные данные: симметрическая матрица A=\{a_{ij}\}.

Вычисляемые данные: диагональная матрица \Lambda=\{\lambda_{ii}\}. Диагональные элементы \Lambda — собственные значения матрицы A, столбцы — приближенные собственные вектора.

По заданной матрице A=A_0 строится последовательность ортогонально подобных матриц A_1, A_2,\ldots, A_m, сходящихся к \Lambda.

A_{i+1}={J_i}^TA_iJ_i, где J_i — ортогональная матрица, называемая вращением Якоби.

Матрица J_i выбирается так, чтобы обнулить элементы (j,k) и (k,j) матрицы A_{i+1}:

\begin{matrix}j & & & & & & & & k \end{matrix}

\begin{align} J_i = \begin{matrix} \\ \\ j \\ \\ \\ \\ \\k \\ \\ \end{matrix} \begin{bmatrix} & 1 & & & & & & & & \\ & & 1 & & & & & & & \\ & & & \ddots & & & & & & \\ & & & & \cos(\theta) & & -\sin(\theta) & & & \\ & & & & & \ddots & & & & \\ & & & & \sin(\theta) & & \cos(\theta) & & & \\ & & & & & & & \ddots & & \\ & & & & & & & & 1 & \\ & & & & & & & & & 1 \\ \end{bmatrix} \end{align}

Для угла вращения \theta:

\begin{bmatrix}a^{(i+1)}_{jj} & a^{(i+1)}_{jk} \\ a^{(i+1)}_{kj} & a^{(i+1)}_{kk}\end{bmatrix}= \begin{bmatrix}\cos\theta & -\sin\theta \\ \sin\theta &\cos\theta\end{bmatrix}^{T} \begin{bmatrix}a^{(i)}_{jj} & a^{(i)}_{jk} \\ a^{(i)}_{kj} & a^{(i)}_{kk}\end{bmatrix} \begin{bmatrix}\cos\theta & -\sin\theta \\ \sin\theta &\cos\theta\end{bmatrix}= \begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}, где \lambda_1 и \lambda_2 — собственные значения подматрицы \begin{bmatrix}a^{(i)}_{jj} & a^{(i)}_{jk} \\ a^{(i)}_{kj} & a^{(i)}_{kk}\end{bmatrix}

.

Обозначим s = \sin \theta и c = \cos \theta.

\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}= \begin{bmatrix}a_{jj}c^2+a_{kk}s^2+2sca_{jk} & sc(a_{kk} - a_{jj}) + a_{jk}(c^2-s^2) \\ sc(a_{kk} - a_{jj}) + a_{jk}(c^2-s^2) & a_{jj}s^2+a_{kk}c^2 - 2sca_{jk} \end{bmatrix}.

Приравняем внедиагональный элемент нулю: \dfrac{a_{jj}-a_{kk}}{2a_{jk}}=\dfrac{c^2-s^2}{2sc}=\dfrac{\cos2\theta}{\sin2\theta}=\operatorname{ctg}2\theta\equiv\tau

Положим tg\theta=t=\dfrac{s}{c}. Тогда t^2+2t\tau-1=0.

Решая квадратное уравнение, получим: t=\dfrac{\operatorname{sign}\tau}{\left|\tau\right|+\sqrt{1+\tau^2}}, c=\dfrac{1}{\sqrt{1+t^2}}, s=t\cdot c.

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные: плотная матрица A=\{a_{ij}\}, A\in\R^{n\times n}. Дополнительные ограничения: A — симметрическая матрица, т. е. a_{ij}= a_{ji}, i, j = 1, \ldots, n.

Объём входных данных:\frac{n (n + 1)}{2} (в силу симметричности достаточно хранить только диагональ и над- или поддиагональные элементы). В разных реализациях эта экономия хранения может быть выполнена разным образом.

Выходные данные: диагональная матрица \Lambda=\{\lambda_{ii}\}, где \lambda_{ii} — собственные значения матрицы A.

Объём выходных данных: n (достаточно хранить только диагональные элементы).

1.10 Свойства алгоритма

2 ЧАСТЬ. Программная реализация алгоритма

3 Литература