Быстрое дискретное преобразование Фурье (БПФ)
Авторы: Чачба А.Н., Костоев Р.С.
Быстрое преобразование Фурье (БПФ) | |
Последовательный алгоритм | |
Последовательная сложность | O(N \log N) |
Объём входных данных | N |
Объём выходных данных | N |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | O(\log N) |
Ширина ярусно-параллельной формы | O(N) |
Содержание
- 1 ЧАСТЬ. Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 ЧАСТЬ. Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 ЧАСТЬ. Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Преобразование Фурье - взаимно однозначное отображение одной функции вещественной, называемой таргетным сигналом, с другой функцией вещественной переменной, называемой образом Фурье или спектром исходной функции по формуле:
- \hat{f}(\omega)=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}f(x)e^{-ix\omega}\,dx
Дискретное преобразование Фурье, в свою очередь, если аналог непрерывного преобразования Фурье, но для дискретного сигнала содержащего N отсчетов. Широко применяет в цифровой обработке сигналов, теории вероятностей, криптографии и акустике. Преобразование Фурье обратимо, причем обратное преобразование имеет практически ту же форму, что и прямое. Преобразование Фурье имеет сложность O(N^2), но существует быстрый вариант преобразование Фурье со сложностью O(N\log{N}).
1.2 Математическое описание алгоритма
Пусть исходный сигнал имеет значения x_n,\quad n = 0,\dots,N-1, тогда дискретное прямое преобразование Фурье (ДПФ) имеет вид:
- X_k = \sum_{n=0}^{N-1}x_ne^{-\frac{2\pi i}{N}kn},\quad k = 0, \dots, N-1
Обозначим \varepsilon_{N} = e^{-\frac{2\pi i}{N}}, тогда ДПФ можно перезаписать в матричной форме:
- \bar X = A\bar x
где матрица A = \{e^{-\frac{2\pi i}{N}(i - 1)(j - 1)}\}_{i,j=1}^{N}
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
Рекурсивный метод, без оптимизации на C++:
#include <vector> #include <complex> using namespace std; typedef complex<double> cd; typedef vector<cd> vcd; vcd fft(const vcd &as) { int n = as.size(); if (n == 1) return vcd(1, as[0]); vcd w(n); // Calculate roots for (int i = 0; i < n; i++) { double alpha = 2 * M_PI * i / n; w[i] = cd(cos(alpha), sin(alpha)); } vcd A(n / 2), B(n / 2); for (int i = 0; i < n / 2; i++) { A[i] = as[i * 2]; B[i] = as[i * 2 + 1]; } vcd Av = fft(A); vcd Bv = fft(B); vcd res(n); for (int i = 0; i < n; i++) res[i] = Av[i % (n / 2)] + w[i] * Bv[i % (n / 2)]; return res; }