Участник:Маркова Екатерина/Построение матрицы Адамара
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
Вычислительное ядро рекурсивного алгоритма состоит из \;\frac{N^2}{2}\; переносов значений в повторяющиеся блоки матрицы и \frac{N^2}{4} переносов со сменой знака (умножением на -1).
1.4 Макроструктура алгоритма
Алгоритм не использует в качестве составных частей другие алгоритмы. Как это было описано в вычислительном ядре, в пустые блоки дублируются со сменой или без смены знака значения первого блока матрицы.
1.5 Схема реализации последовательного алгоритма
В описанном виде алгоритм представляет из себя примитивное дублирование элементов матрицы, полученной на предыдущем этапе, в пустующие блоки новой матрицы.
Сначала заполняется правый верхний блок матрицы h
h_{ij} = h_{i(j - \frac{N}{2})}, где i = 1..\frac{N}{2}, j = \frac{N}{2}+1..N;
затем левый нижний блок
h_{ij} = h_{(i-\frac{N}{2})j}, где i = \frac{N}{2}+1..N, j = 1.. \frac{N}{2}.
Последним заполняется нижний правый блок матрицы
h_{ij} = h_{(i-\frac{N}{2})(j-\frac{N}{2})}, где i = \frac{N}{2}+1..N , j = \frac{N}{2}+1..N.
1.6 Последовательная сложность алгоритма
Для заполнения трех пустых блоков равного размера матрицы h размера N\times N необходимо \frac{3N^2}{4}. Из чего можно сделать вывод, что рекурсивный метод построения матрицы Адамара является алгоритмом с квадратичной сложностью.
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма