Уровень алгоритма

Участник:Ян-Мартин Тамм/Строгий алгоритм С средних

Материал из Алговики
Версия от 04:32, 13 октября 2016; Darel (обсуждение | вклад) (Новая страница: «{{algorithm | name = Строгий алгоритм С средних (K-means, Hard C-Means) | serial_complexity = <math>O(n)</math> | pf_height…»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к навигации Перейти к поиску


Строгий алгоритм С средних (K-means, Hard C-Means)
Последовательный алгоритм
Последовательная сложность [math]O(n)[/math]
Объём входных данных [math]mn+1[/math]
Объём выходных данных [math]cn[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]-[/math]
Ширина ярусно-параллельной формы [math]-[/math]


1 Описание алгоритма

Строгий алгоритм C средних, более известный как K-средних, решает задачу разделения векторов в многомерном пространстве на заданное количество кластеров. При этом каждый вектор принадлежит только одному кластеру, поэтому алгоритм называется строгим, в то время как нечеткий алгоритм C средних (Fuzzy C-means, Soft K-means) определяет степень принадлежности вектора каждому из кластеров.
Данная задача является NP-трудной, тем не менее описываемый алгоритм сходится к локальному оптимуму. Глобальный оптимум не гарантируется и зависит от первоначального распределения центров кластеров и их количества.
Общая идея алгоритма такова: произвольным образом выбираем центры кластеров, после чего повторяем следующие два действия, пока не будет выполнено условие остановки:

  1. Распределяем каждый вектор в ближайший кластер
  2. Пересчитываем значения центров как среднее значение координат векторов в каждом кластере

Минимизируется сумма расстояний векторов от центров их кластеров. Остановка производится если либо значение данной функции становится ниже некоторого порога, либо мало изменяется по сравнению с предыдущей итерацией.

1.1 Математическое описание алгоритма

Дано множество d-мерных векторов  [math]U=\{u_1, u_2, ..., u_n\}[/math] и число кластеров [math]k \in \mathbb{N}[/math]. Требуется разбить множество [math]U[/math] на [math]k[/math] непересекающихся непустых кластеров [math]C_1, C_2, ..., C_k[/math] таких, что [math]{\bigcup \limits _{i = 1}^k C_i} = U [/math].
Для этого минимизируется функция [math] J = \sum\limits_{i=1}^k J_i = \sum\limits_{i=1}^k \sum\limits_{ u \in C_i} \|u-c_i \|^2 [/math], где [math]c_i[/math]— центр масс векторов кластера [math]C_i[/math].
Произвольным образом инициализируем центры кластеров [math]c_1, c_2, ..., c_k[/math], после чего начинается основная часть алгоритма.

  • Каждый вектор [math]u_l[/math] определяем в ближайший к нему кластер [math]C_i[/math], то есть такой, что [math] \|u_l-c_i\|^2 \leqslant \|u_l-c_j\|^2 \;\; \forall i \neq j; \;\; (i,j=1,2,\ldots,k, \; l = 1,2,\ldots,n) [/math].
  • Хранить информацию о принадлежности векторов кластерам будем в матрице [math]M[/math] следующего вида:
    [math] m_{ij} = \begin{cases} 1, & u_j \in C_i \\ 0, & \text{otherwise} \end{cases} [/math]
  • Считаем значение функции [math]J[/math] и прекращаем работу алгоритма, если это значение меньше заданного порога [math]\epsilon[/math], либо значение мало изменилось после текущей итерации.
  • Обновляем значения центров кластеров
    [math] c_i = \frac{1}{|C_i|} \sum\limits_{u \in C_i} u \;\; (i=1,2,\ldots,k) [/math]
  • Возвращаемся к распределению векторов по кластерам.