Уровень алгоритма

Участник:Почернина Елена/Метод Якоби вычисления сингулярных чисел и векторов

Материал из Алговики
Перейти к навигации Перейти к поиску


Метод Якоби вычисления сингулярных чисел и векторов
Последовательный алгоритм
Последовательная сложность [math]O(n^3)[/math]
Объём входных данных [math]n^2[/math]
Объём выходных данных [math]2n^2 + n[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math][/math]
Ширина ярусно-параллельной формы [math][/math]

Авторы статьи: Почернина Елена (группа 601), Костюкова Светлана (группа 601)

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Метод Якоби позволяет найти сингулярное разложение плотной матрицы [math]G[/math] размера [math]n[/math]×[math]n[/math]. Такое разложение можно записать в виде [math]G = U\Sigma V^*[/math], где [math]U, V[/math] - унитарные (в вещественном случае - ортогональные) матрицы размера [math]n[/math]×[math]n[/math], [math]\Sigma[/math] - диагональная матрица размера [math]n[/math]×[math]n[/math] с вещественными положительными числами на главной диагонали. Диагональные элементы матрицы [math]\Sigma[/math] называются сингулярными числами матрицы [math]G[/math], а столбцы матриц [math]U,V[/math] - левыми и правыми сингулярными векторами.

Неявный[1] метод Якоби математически эквивалентен применению метода Якоби вычисления собственных значений к матрице [math]A = G^TG[/math]. Это значит, что на каждом шаге вычисляется вращение Якоби [math]J[/math], с помощью которого матрица [math]G^TG[/math] неявно пересчитывется в [math]J^TG^TGJ[/math]; вращение выбрано так, чтобы пара внедиагональных элементов из [math]G^TG[/math] обратилась в нули в матрице [math]J^TG^TGJ[/math]. При этом ни [math]G^TG[/math], ни [math]J^TG^TGJ[/math] не вычисляются в явном виде; вместо них вычисляется матрица [math]GJ[/math]. Поэтому алгоритм называется методом односторонних вращений.

Метод Якоби для вычисления сингулярных чисел и векторов является самым медленным из имеющихся алгоритмов поиска сингулярных чисел и векторов, но тем не менее, интерес к нему сохраняется. Для некоторых некоторых типов матриц [math]G[/math] он способен вычислять сингулярные числа и векторы намного точнее, чем другие методы. В частности, метод Якоби вычисляет сингулярные числа матрицы [math]G[/math] с высокой точностью, если G может быть представлена в виде [math]G = DX[/math], где [math]D[/math] – диагональная матрица, а [math]X[/math] – хорошо обусловлена. В этом случае заданная матрица обрабатывается без предварительного приведения к двухдиагональному виду, в то время как другие алгоритмы включают в себя приведение матрицы к двухдиагональной форме, из-за чего и теряют все верные разряды во всех сингулярных числах, кроме старшего.

1.2 Математическое описание алгоритма

Исходные данные: матрица [math]G[/math] (элементы [math]g_{ij}, i, j = 1, \ldots, n[/math]).

Вычисляемые данные: матрица [math]\Sigma = diag(\sigma_{i})[/math], где [math]\sigma_{i}[/math] - сингулярные числа, [math]U[/math] - матрица левых сингулярных векторов, [math]V[/math] - матрица правых сингулярных векторов.

Основной алгоритм заключается в следующем[2]:

Для всех элементов матрицы [math]A^{(i)} = (G^TG)^{(i)}[/math], находящихся вне главной диагонали [math](a_{12}, a_{13},\dots, a_{1n}, a_{23}, a_{24},\dots, a_{2n},\dots, a_{n-1n})[/math] проверяем условие [math]|A_{jk}|\lt \varepsilon[/math]: Если [math]|A_{jk}^{(i)}| \le \varepsilon[/math], то переходим к следующему элементу, Если [math]|A_{jk}^{(i)}| \gt \varepsilon[/math], то нужно выполнить вращение в плоскости [math](jk)[/math], после чего перейти к следующей итерации алгоритма. Если на очередной итерации не было совершено ни одного вращения, значит матрица [math]A[/math] стала достаточна близка к диагональной, и можно перейти к вычислению искомых значений:

[math]\sigma_i = ||G(:,i)||_2[/math];

[math]U = [u_1,\dots,u_n][/math], где [math]u_i = G(:,i)/\sigma_i[/math];

[math]V = J[/math], где [math]J[/math] - накопленное произведение вращений Якоби.

Одностороннее вращение в плоскости [math](jk)[/math] осуществляет процедура One-Sided-Jacobi-Rotation[math](G,j,k)[/math]:

proc One-Sided-Jacobi-Rotation[math](G,j,k)[/math]
    вычислить [math]a_{jj} = (G^TG)_{jj}, a_{jk} = (G^TG)_{jk}[/math] и [math]a_{kk} = (G^TG)_{kk}[/math]
    if [math]|a_{jk}|[/math] не слишком мал
        [math]
         \begin{align}
         \tau &= {a_{jj} - a_{kk}}/{2a_{jk}} \\
         t &= {sign(\tau)}/(|\tau| + \sqrt{1 + \tau^2}) \\
         c &= 1/(\sqrt{1 + t^2}) \\
         s &= ct \\
         G &= GR(j,k,\theta) \  \dots c=cos\theta, s=sin\theta \end{align}[/math]
        if нужны правые сингулярные векторы 
            [math]J = JR(j,k,\theta)[/math]
        end if
    end if

Здесь [math]R(j,k,\theta)[/math] - матрица вращений Якоби. Матрица вращений выбирается так, чтобы обнулить пару внедиагональных элементов[3].

                                                                                 [math] \begin{matrix} & & & & j & & k & & & \\ \end{matrix} [/math]

[math] J_i = R(j,k,\theta) = \begin{matrix} \\ \\ \\ j \\ \\ k \\ \\ \\ \\ \end{matrix} [/math] [math] \begin{bmatrix} & 1 & & & & & & & & \\ & & 1 & & & & & & & \\ & & & \ddots & & & & & & \\ & & & & \cos(\theta) & & -\sin(\theta) & & & \\ & & & & & \ddots & & & & \\ & & & & \sin(\theta) & & \cos(\theta) & & & \\ & & & & & & & \ddots & & \\ & & & & & & & & 1 & \\ & & & & & & & & & 1 \\ \end{bmatrix} [/math]


Для завершения описания алгоритма, нужно указать критерий останова, то есть объяснить смысл условия "если [math]a_{jk}[/math] не слишком мал". Подходящим критерием останова является условие [math]\begin{align} |a_{jk}| \ge \varepsilon\sqrt{a_{jj}a_{kk}} \end{align}[/math].

1.3 Вычислительное ядро алгоритма

Вычислительное ядро составляют множественные вычисления элементов матрицы [math]a_{jj} = (G^TG)_{jj}, a_{jk} = (G^TG)_{jk}[/math] и [math]a_{kk} = (G^TG)_{kk}[/math], а также вычисление промежуточной матрицы [math]GR(j, k, \theta)[/math] путем умножения исходной матрицы на матрицу вращения Якоби в процессе выполнения процедуры One-Sided-Jacobi-Rotation[math](G,j,k)[/math].

После приведения матрицы [math]G^TG[/math] к виду, достаточно близкому к диагональному, вычисляются сингулярные числа:

[math]\sigma_i = ||G(:,i)||_2[/math]

Матрица левых сингулярных векторов [math]U = [u_1,..., u_n][/math]:

[math]u_i = G(:,i)/\sigma_i[/math]

И (если требуется) матрица правых сингулярных векторов [math]V[/math] путем накопления произведения вращений Якоби:

[math] V = J, J = JR(j, k, \theta) [/math]

1.4 Макроструктура алгоритма

Основную часть метода составляет процедура односторонних вращений матрицы (процедура One-Sided-Jacobi-Rotation[math](G,j,k)[/math]). Рассмотрим подробнее структуру этой процедуры.

- Вычисление [math]a_{jk}, a_{jj}, a_{kk} (a_{ij} = (G^TG)_{ij})[/math]. В связи с тем, что нет необходимости каждый раз вычислять произведение [math]G^TG[/math], для вычисления каждого элемента требуется [math]n[/math] операций умножения и [math](n-1)[/math] операций сложения.

- Вычисление [math]\tau, c, s, t[/math] не представляют значительной вычислительной сложности.

- Одностороннее вращение матрицы (умножение входной матрицы на матрицу вращения) требует порядка [math]O(n)[/math] операций.

В итоге, процедура One-Sided-Jacobi-Rotation требует [math]O(n)[/math] операций.

После выполнения алгоритма односторонних вращений необходимо вычислить искомые матрицы [math]S, U, V[/math] (матрица сингулярных чисел и матрицы левых и правых векторов).

- Вычисление сингулярных чисел [math]\sigma_i[/math] требует [math]n[/math] операций умножения.

- Вычисление [math]U[/math] требует [math]O(n^2)[/math] операций. Аналогично для матрицы [math]V[/math].

1.5 Схема реализации последовательного алгоритма

Метод можно описать следующим образом[4]:

repeat
    for [math]j=1[/math] to [math]n-1[/math]
        for [math]k=j+1[/math] to [math]n[/math]
            обратиться к процедуре One-Sided-Jacobi-Rotation[math](G,j,k)[/math]
        end for
    end for
пока [math]G^TG[/math] не станет достаточно близка к диагональной матрице
Положить [math]\sigma_{i} = ||G(:,i)||_2 [/math] (норма [math]i[/math]-го столбца в [math]G[/math])
Положить [math]U = [u_{1},\dots, u_{n}][/math], где [math]u_{i} = G(:,i)/\sigma_{i}[/math]
Положить [math]V = J[/math], где [math]J[/math] - накопленное произведение вращений Якоби.

Метод Якоби для нахождения сингулярных чисел и векторов матрицы [math]G[/math] также использует метод односторонних вращений (процедура One-Sided-Jacobi-Rotation). Алгоритм выглядит следующим образом:

proc One-Sided-Jacobi-Rotation[math](G,j,k)[/math]
    вычислить [math]a_{jj} = (G^TG)_{jj}, a_{jk} = (G^TG)_{jk}[/math] и [math]a_{kk} = (G^TG)_{kk}[/math]
    if [math]|a_{jk}|[/math] не слишком мал
        [math]
         \begin{align}
         \tau &= {a_{jj} - a_{kk}}/{2a_{jk}} \\
         t &= {sign(\tau)}/(|\tau| + \sqrt{1 + \tau^2}) \\
         c &= 1/(\sqrt{1 + t^2}) \\
         s &= ct \\
         G &= GR(j,k,\theta) \  \dots c=cos\theta, s=sin\theta \end{align}[/math]
        if нужны правые сингулярные векторы 
            [math]J = JR(j,k,\theta)[/math]
        end if
    end if

1.6 Последовательная сложность алгоритма

Для вычисления сингулярных чисел и векторов матрицы порядка [math]n[/math] в последовательном варианте на каждой итерации алгоритма вызывается процедура One-Sided-Jacobi-Rotation[math](G,j,k)[/math], сложность которой равна [math]O(n)[/math]. Так как выбор индексов [math]j[/math] и [math]k[/math] осуществляется путем перебора внедиагональных элементов матрицы, для полного прохода потребуется [math]\frac{n(n-1)}{2}[/math] итераций.

Таким образом, метод Якоби вычисления сингулярных чисел и векторов при классификации по последовательной сложности относится к алгоритмам с кубической сложностью.

1.7 Информационный граф

Опишем граф алгоритма как аналитически, так и в виде рисунка.

Первая группа вершин расположена в двумерной области, соответствующая ей операция - вычисление [math]a_{jj}, a_{jk}, a_{kk}[/math]. Естественно введённые координаты области таковы:

  • [math]j[/math] — меняется в диапазоне от [math]1[/math] до [math]n-1[/math], принимая все целочисленные значения;
  • [math]k[/math] — меняется в диапазоне от [math]j+1[/math] до [math]n[/math], принимая все целочисленные значения.

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные: плотная матрица [math]G[/math] (элементы [math]g_{ij}[/math]). Дополнительные ограничения:

  • [math]A= G^TG[/math] – симметрическая матрица, т. е. [math]a_{ij}= a_{ji}, i, j = 1, \ldots, n[/math].

Объём входных данных: [math]n^2[/math]

Выходные данные: матрица [math]\Sigma = diag(\sigma_{i})[/math], где [math]\sigma_{i}[/math] - сингулярные числа, матрица [math]U[/math] левых сингулярных векторов и матрица [math]V[/math] правых сингулярных векторов.

Объём выходных данных: [math]2n^2 + n[/math] (так как матрица сингулярных чисел [math]\Sigma[/math] - диагональная, то достаточно хранить вектор сингулярных чисел (элементы [math]\sigma_i[/math]), а также две матрицы [math]U, V[/math] левых и правых сингулярных векторов).

1.10 Свойства алгоритма

Метод Якоби является самым медленным из имеющихся алгоритмов вычисления сингулярных чисел и сингулярных векторов матрицы. Тем не менее, для некоторых некоторых типов матриц G он способен вычислять сингулярные числа и векторы намного точнее, чем другие методы. Кроме того, в методе Якоби заданная матрица обрабатывается без предварительного приведения к двухдиагональному виду, за счет этого метод достигает высокой относительной точности.

Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов для метода Якоби является линейным, вычислительная мощность алгоритма также линейна.

Метод Якоби не детерминирован, так как является итерационным алгоритмом с выходом по точности (число итераций зависит от входных данных и порогового значения).

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Метод Якоби нахождения сингулярных значений и векторов реализован в немногих пакетах, например, LAPACK, Intel MKL. Это не значит, что алгоритм не представляет никакого интереса для изучения. Для некоторых типов матриц метод способен вычислять сингулярные числа и сингулярные векторы намного точнее, чем другие методы. Но в связи с тем, что алгоритм считается медленным, он не включен во многие известные пакеты.

3 Литература

  1. Дж. Деммель «Вычислительная линейная алгебра» (стр. 261-264)
  2. Дж. Деммель «Вычислительная линейная алгебра» (стр. 261-264)
  3. Дж. Деммель «Вычислительная линейная алгебра» (стр. 244-245)
  4. Дж. Деммель «Вычислительная линейная алгебра» (стр. 261-263)