Участник:Davletshuna Alexandra/Метод Якоби вычисления сингулярных чисел и векторов
Метод Якоби вычисления сингулярных чисел и векторов | |
Последовательный алгоритм | |
Последовательная сложность | [math]O(n^3)[/math] |
Объём входных данных | [math]\frac{n (n + 1)}{2}[/math] |
Объём выходных данных | [math]\frac{n (n + 1)}{2}[/math] |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | [math][/math] |
Ширина ярусно-параллельной формы | [math][/math] |
Авторы статьи: Давлетшина Александра (группа 619), Зайцева Александра (группа 601)
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Сингулярным разложением называется разложение прямоугольной вещественной или комплексной матрицы, имеющее широкое применение, в силу своей наглядной геометрической интерпретации, при решении многих прикладных задач. Сингулярное разложение матрицы А позволяет вычислять сингулярные числа данной матрицы, а также, левые и правые сингулярные векторы матрицы А:
• левые сингулярные векторы матрицы А — это собственные векторы матрицы [math]AA^*[/math];
• правые сингулярные векторы матрицы A — это собственные векторы матрицы [math]A^*A[/math].
Геометрическая интерпретация сингулярного разложения заключается в следующем факте из геометрии: Образом любого линейного преобразования, заданного с помощью матрицы [math]m[/math]x[math]n[/math], примененного к единичной сфере является гиперэллипсоид.
Из многочисленных разложений матриц, наиболее удобным является сингулярное разложение матрицы в виде: [math]A=U\Sigma V^*[/math], где [math]U, V[/math] – унитарные матрицы, а [math]\Sigma[/math] – диагональная матрица с вещественными положительными числами на диагонали [1].
Диагональные элементы матрицы [math]\Sigma[/math] называются сингулярными числами матрицы [math]A[/math], а столбцы матриц [math]U,V[/math] левыми и правыми сингулярными векторами соответственно.
Алгоритм Якоби сингулярного разложения матрицы был предложен одним из первых в 1846 году. Он приводит прямоугольную матрицу к диагональной матрице с помощью последовательности элементарных вращений. Метод может найти все сингулярные значения с очень высокой точностью. Однако его производительность является довольно низкой, в сравнении с конкурирующими методами.
Неявный[2] метод Якоби математически эквивалентен применению метода Якоби вычисления собственных значений к матрице [math]A = G^TG[/math]. Это значит, что на каждом шаге вычисляется вращение Якоби [math]J[/math], с помощью которого матрица [math]G^TG[/math] неявно пересчитывется в [math]J^TG^TGJ[/math]; вращение выбрано так, чтобы пара внедиагональных элементов из [math]G^TG[/math] обратилась в нули в матрице [math]J^TG^TGJ[/math]. При этом ни [math]G^TG[/math], ни [math]J^TG^TGJ[/math] не вычисляются в явном виде; вместо них вычисляется матрица [math]GJ[/math]. Поэтому алгоритм называется методом односторонних вращений.
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
Применение метода Якоби к матрице [math]A = (G^TG)^{(i)}[/math] можно описать следующим образом[3]:
Если [math]G = U\Sigma V^T[/math] и [math]\Sigma = diag(\sigma_{i})[/math], то алгоритм вычисляет сингулярные числа [math]\sigma_{i}[/math], матрицу [math]U[/math] левых сингулярных векторов и матрицу [math]V[/math] правых сингулярных векторов по следующей схеме:
repeat for [math]j=1[/math] to [math]n-1[/math] for [math]k=j+1[/math] to [math]n[/math] обратиться к процедуре One-Sided-Jacobi-Rotation[math](G,j,k)[/math] end for end for пока [math]G^TG[/math] не станет достаточно близка к диагональной матрице Положить [math]\sigma_{i} = ||G(:,i)||_2 [/math] (норма [math]i[/math]-го столбца в [math]G[/math]) Положить [math]U = [u_{1},\dots, u_{n}][/math], где [math]u_{i} = G(:,i)/\sigma_{i}[/math] Положить [math]V = J[/math], где [math]J[/math] - накопленное произведение вращений Якоби.
Где процедура One-Sided-Jacobi-Rotation является метод односторонних вращений Якоби:
proc One-Sided-Jacobi-Rotation[math](G,j,k)[/math] вычислить [math]a_{jj} = (G^TG)_{jj}, a_{jk} = (G^TG)_{jk}[/math] и [math]a_{kk} = (G^TG)_{kk}[/math] if [math]|a_{jk}|[/math] не слишком мал [math] \begin{align} \tau &= {a_{jj} - a_{kk}}/{2a_{jk}} \\ t &= {sign(\tau)}/(|\tau| + \sqrt{1 + \tau^2}) \\ c &= 1/(\sqrt{1 + t^2}) \\ s &= ct \\ G &= GR(j,k,\theta) \ \dots c=cos\theta, s=sin\theta \end{align}[/math] if нужны правые сингулярные векторы [math]J = JR(j,k,\theta)[/math] end if end if
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Масштабируемость алгоритма и его реализации
2.2 Существующие реализации алгоритма
Метод Якоби нахождения сингулярных значений и векторов реализован в пакете LAPACK. В связи с тем, что алгоритм считается медленным, он не включен во многие известные пакеты.
3 Литература
1. Дж. Деммель Вычислительная линейная алгебра. Изд. Мир, 2001.
- ↑ http://algorithms.parallel.ru/
- ↑ Дж. Деммель «Вычислительная линейная алгебра» (стр. 261-264)
- ↑ Дж. Деммель «Вычислительная линейная алгебра» (стр. 261-263)