Уровень алгоритма

Участник:Артем Таран/Графо-ориентированный алгоритм кластеризации CHAMELEON

Материал из Алговики
Перейти к навигации Перейти к поиску


Графо-ориентированный алгоритм кластеризации CHAMELEON
Последовательный алгоритм
Последовательная сложность [math]O(n^2+nm+m^2log(m))[/math]
Объём входных данных [math]\frac{n (n - 1)}{2}[/math]
Объём выходных данных [math]n[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(n + log(n) + m^2log(m))[/math]
Ширина ярусно-параллельной формы [math]O(n)[/math]


Статью подготовили: Артём Таран Иванович (разделы 1.1 - 1.10), Шимчик Никита Владимирович (разделы 1.1 - 1.10).

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Кластеризация — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы (кластеры) с минимизацией межкластерного сходства и максимизацией внутрикластерного сходства.

Графо-ориентированный алгоритм кластеризации CHAMELEON - относительно новый алгоритм, который измеряет сходство двух кластеров на основе динамической модели. В процессе кластеризации два кластера объединяются, только если показатели взаимосвязанности и близости между двумя кластерами являются высокими по отношению к показателям внутренней взаимосвязанности кластеров и близости элементов внутри этих кластеров. Процесс слияния с использованием динамической модели, использующийся в данном алгоритме облегчает открытие природных и однородных кластеров. Методология динамического моделирования кластеров, использующаяся в CHAMELEON, применима ко всем типам данных, для которых может быть построена матрица подобия.

Алгоритм кластеризации CHAMELEON включает в себя три этапа:

1) Построение графа, путём добавления рёбер по принципу k ближайших соседей.

Графы k ближайших соседей: 1) объекты в пространстве, 2) граф по принципу 1-го ближайшего соседа, 3) граф по принципу 2-го ближайшего соседа, 4) граф по принципу 3-х ближайших соседей

2) Выделение множества сравнительно малых связных подграфов.

3) Формирование набора кластеров, на основе множества подграфов, полученных на предыдущем этапе.

1.2 Математическое описание алгоритма

1.2.1 Данные

  • Исходные данные: множество из [math]n[/math] точек [math]V = \{v_{i}\}[/math] в метрическом пространстве, которое может быть задано в виде треугольной матрицы расстояний [math]A[/math] размера [math]n\times n[/math].
  • Промежуточный результат после первого этапа: граф [math]G = (V, E)[/math], полученный путём соединения каждой точки с её [math]k[/math] ближайшими соседями.
  • Промежуточный результат после второго этапа: разбиение множества [math]V[/math] на набор [math]K = \{K_{i}\}[/math] попарно непересекающихся связных подмножеств, из которого образуется взвешенный граф [math]G_{2} = (K, E_{2})[/math].
  • Промежуточный результат после третьего этапа: итоговое разбиение множества вершин графа [math]G_{2}[/math] на набор кластеров [math]C = \{C_{i}\}[/math].
  • Вычисляемые данные: n-мерный вектор [math]v[/math] (элементы [math]v_{i}[/math]), показывающий отображение исходного множества точек на набор кластеров [math]C[/math].

1.2.2 Определения

  • Абсолютная взаимная связность между парой кластеров [math]C_{i}[/math] и [math]C_{j}[/math] определяется как сумма весов ребер, соединяющих вершины, принадлежащие [math]C_{i}[/math] с вершинами из [math]C_{j}[/math]. Эти ребра, фактически, входят в разделитель ребер графа, состоящего из кластеров [math]C_{i}[/math] и [math]C_{j}[/math], и разбивающим его на подграфы [math]C_{i}[/math] и [math]C_{j}[/math]. Обозначается эта величина как

[math]EC_{(C_{i},C_{j})}[/math]. Внутреннюю связность [math]EC_{C_{i}}[/math] кластера [math]C_{i}[/math] можно вычислить как сумму ребер, входящих в разделитель ребер, разбивающий [math]C_{i}[/math] на два совершенно равных подграфа.

  • Относительная взаимная [math]RI_{(C_{i},C_{j})}[/math] связность пары кластеров [math]C_{i}[/math] и [math]C_{j}[/math] определяется формулой:

[math]RI_{(C_{i},C_{j})} = \frac{2*|EC_{(C_{i},C_{j})}|}{|EC_{C_{i}}|+|EC_{C_{j}}|}[/math]

Учитывая значения относительной взаимной связности, можно добиться получения кластеров разного размера, формы и плотности, то есть общего внутреннего сходства.

  • Абсолютное взаимное сходство между парой кластеров [math]C_{i}[/math] и [math]C_{j}[/math] подсчитывается как среднее сходство между соединенными вершинами, принадлежащими [math]C_{i}[/math] и [math]C_{j}[/math] соответственно. Эти соединения обусловлены предыдущим разбиением общего графа, полученного на матрице сходства.
  • Относительное взаимное сходство [math]RC_{(C_{i},C_{j})}[/math] между парой кластеров [math]C_{i}[/math] и [math]C_{j}[/math] определяется как абсолютное сходство между этой парой кластеров, нормализованное с учетом их внутреннего сходства и вычисляется по формуле:

[math] RC_{(C_{i},C_{j})}= \frac{S_{EC_{(C_{i},C_{j})}}}{\frac{|C_{i}|}{|C_{i}+C_{j}|}*S_{EC_{(C_{i})}}+\frac{|C_{i}|}{|C_{i}+C_{j}|}*S_{EC_{(C_{j})}}}[/math],

где [math]S_{EC_{(C_{i})}}[/math] и [math]S_{EC_{(C_{i})}}[/math] - средние веса ребер (значения сходства), принадлежащих разделителю ребер кластеров [math]C_{i}[/math] и [math]C_{j}[/math] соответственно, и [math]S_{EC_{(C_{i},C_{j})}}[/math] - средний вес ребер, соединяющих вершины [math]C_{i}[/math] с вершинами [math]C_{j}[/math], причем ребра принадлежат разделителю ребер [math]EC_{(C_{i})}[/math], определенному ранее.

Далее, алгоритм применяет агломеративную иерархическую кластеризацию с использованием вышеозначенных показателей. Причем существует две стратегии их учета. Первая подразумевает наличие некоторых пороговых значений [math]T_{RI}[/math] и [math]T_{RC}[/math]. В соответствии с этой стратегией, алгоритм для каждого кластера [math]C_{i}[/math] проверяет, отвечают ли смежные (наиболее близкие) ему кластеры условиям:

  • [math]RI_{(C_{i},C_{j})} \geqslant T_{RI}[/math]
  • [math]RC_{(C_{i},C_{j})} \geqslant T_{RC}[/math]

Если более одного смежного кластера отвечает этим условиям, то алгоритм выбирает для объединения наиболее связный кластер (граф), то есть такой кластер [math]C_{j}[/math], с которым у кластера [math]C_{i}[/math] получается наибольшая абсолютная взаимная связность. По завершению прохода по всем кластерам, созданные таким образом пары объединяются. Параметры [math]T_{RI}[/math] и [math]T_{RC}[/math] могут использоваться для изменения характеристик получаемых кластеров.

Вторая стратегия заключается в использовании специальной функции, объединяющей понятия относительной взаимной связности и относительного взаимного сходства. На каждом шаге выбираются те кластеры для объединения, которые максимизируют эту функцию:

[math]RI_{(C_{i},C_{j})}*RC_{(C_{i},C_{j})}^\alpha[/math],

где [math]\alpha[/math] выбирается пользователем. Если [math]\alpha \gt 1 [/math], то алгоритм придает большее значение относительному взаимному сходству, а если [math]\alpha \lt 1 [/math], то большее значение имеет относительная взаимная связность. Разумеется, данный подход позволяет получить полную дендрограмму кластерного анализа.

1.3 Вычислительное ядро алгоритма

На первом этапе работы алгоритма вычислительным ядром можно считать процесс нахождения k ближайших соседей для каждой отдельной вершины.

На втором этапе работы алгоритма вычислительным ядром является поиск разбиения графа на два подграфа с минимизацией разделителя рёбер графа.

На третьем этапе работы алгоритма вычислительным ядром является расчёт [math]EC_{(C_{i},C_{j})}[/math], [math]RC_{(C_{i},C_{j})}[/math] и [math]RI_{(C_{i},C_{j})}[/math] для пары смежных кластеров, а также их слияние.

1.4 Макроструктура алгоритма

Алгоритм CHAMELEON выполняется в 3 этапа, последовательных относительно друг друга. Каждый этап соответствует отдельному алгоритму.

  • Макрооперацией на первом этапе является процедура выделения k ближайших соседей.
  • Макрооперацией на втором этапе является процедура разбиения наибольшего подграфа на каждой итерации.
  • Макрооперациями на третьем этапе являются процедуры вычисления метрики для принятия решения об объединении кластеров и объединение кластеров на каждой итерации.

1.5 Схема реализации последовательного алгоритма

  • Первый этап (псевдокод):
 integer n; // Количество точек.
 integer k; // Параметр k
 integer A[n][n]; // Верхняя треугольная матрица расстояний между точками.
 
 integer E[n][n]; // Верхняя треугольная матрица рёбер графа G - изначально инициализирована нулями.
 foreach (integer i in (1,n-1) ) {
   integer Neighbors[k]; // матрица, используемая хранения ближайших соседей
   integer countN = 0;
   
   foreach (integer j in (i+1, n) ) {
     // Заполняем матрицу Neighbors, добавляя новые элементы и увеличивая счётчик countN.
     // Когда countN станет равен k, новые элементы будут вставляться на место старых, либо отбрасываться.
   }
 
   foreach (integer j in (0, countN) ) {
     E[min(i,j), max(i,j)] = 1;
   }
 }
 return E;
  • Второй этап:
 Диаграмма шаг 2.png
  • Третий этап:
 Chameleon stage 3.png

1.6 Последовательная сложность алгоритма

1) Построение графа на основе метода k ближайших соседей в худшем случае требует [math]O(n^2)[/math] операций;

2) Для выделения множества сравнительно малых связных подграфов требуется [math]nm[/math] операций;

3) Формирование набора кластеров, на основе множества подграфов, полученных на предыдущем этапе, требует [math]m^2log(m)[/math] операций.

Итого, получаем последовательную сложность [math]O(n^2+nm+m^2log(m))[/math].

1.7 Информационный граф

 Chameleon inforgraph.png

1.8 Ресурс параллелизма алгоритма

Первый этап работы алгоритма можно распределить между [math]n[/math] процессами: в этом случае каждому процессу назначается своя точка и происходит поиск [math]k[/math] ближайших соседей. Таким образом, его параллельная сложность составляет O(n).

На втором этапе количество задействованных процессов может варьироваться в зависимости от входных данных. В худшем случае число итераций можно оценить как [math]O(log(n))[/math].

Третий этап распараллелить не представляется возможным, поскольку выбор очередной пары кластеров для сравнения зависит от результата выполнения предыдущей итерации, поэтому сложность оставляется равной [math]m^2log(m)[/math].

Таким образом, суммарная параллельная сложность оказывается равна [math]O(n + log(n) + m^2log(m))[/math]

1.9 Входные и выходные данные алгоритма

  • Входные данные:

1) Треугольная матрица [math]A[/math] размера [math]n\times n[/math] (где n — количество объектов), в которой элементу [math]a_{ij}[/math] соответствует расстояние между i-м и j-м объектами.

2) Количество ближайших соседей [math]k[/math] для вершин (рекомендуемое значение [math]k[/math] от 5 до 20 в зависимости от количества анализируемых объектов).

3) Наименьшее число вершин, которое может содержать наибольший подграф на 2-м этапе [math]l[/math]. Величина этого параметра варьируется от 1 до 5 % от общего числа объектов.

  • Объём входных данных: [math]\frac{n (n - 1)}{2}[/math]
  • Выходные данные: n-мерный вектор [math]v[/math], в котором элементу [math]v_{i}[/math] соответствует номер кластера, присвоенный i-му объекту
  • Объём выходных данных: [math]n[/math]

1.10 Свойства алгоритма

Первый этап алгоритма обладает хорошим ресурсом параллелизма: параллельная сложность его выполнения составляет [math]O(n)[/math], что намного лучше последовательной оценки [math]O(n^2)[/math]. У второго и третьего этапов алгоритма сложно полностью оценить ресурсы параллелизма. Второй этап возможно частично распараллеллить, в том время третий этап в основном является последовательным.

Детерминированность: Важной особенностью данного алгоритма является его недетерминированность. Несмотря на то, что 1-й этап детерминирован, алгоритм в целом является недетерминирован, так как на 2-ом этапе невозможно предсказать разбиение исходного графа на подграфы.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Существует несколько последовательных реализаций алгоритма. С одной из них можно ознакомиться по ссылке [1].

Возможна реализация алгоритма CHAMELEON с использованием графовых библиотек, как, например METIS [2] , hMETIS [3] и RANN [4].

Параллельных реализаций алгоритма CHAMELEON найдено не было. Однако существует исследование, связанное с реализацией CHAMELEON посредством технологии OpenMP, с которым можно ознакомиться здесь [5].

3 Литература

<references \>