Участник:Анюшева Ирина/Итерационный метод решения системы линейных алгебраических уравнений GMRES (обобщенный метод минимальных невязок)
Основные авторы описания: Анюшева Ирина (614 группа), Исхаков Эльдар (614 группа)
Содержание
1 Свойства и структура алгоритма
2 Свойства и структура алгоритма
2.1 Общее описание алгоритма
Обобщенный метод минимальных невязок (GMRES) для решения системы линейных алгебраических уравнений аппроксимирует решение с помощью вектора в подпространства Крылова с минимальным остатком. Метод GMRES разработан Ю.Саадом и Мартин Х. Шульцом в 1986 году. Метод по праву считается одним из самых эффективных численных методов решения несимметричных систем. Он гарантирует неувеличение нормы невязки в ходе итерационного процесса, который строится основан на построении базиса в соответствующей системе подпространстве Крылова [math]K_j(A, r_0)[/math]. Затем решение уточняется некоторой добавкой, представленной в виде разложения по этому базису.
Метод обобщенных минимальных невязок популярен из-за наличия ряда преимуществ: он ошибкоустойчив, допускает эффективное распараллеливание, не требует нахождения параметра релаксации, обладает суперлинейной скоростью сходимости. Однако в чистом виде для больших систем метод не используется из-за чрезвычайно больших затрат памяти. Зато широкое распространение получила перезапускаемая версия метода, подоразумевающая перезапуск метода каждые m итераций. Уменьшение размерности пространства может привести к стагнации метода – процессу, при котором с каждой следующей итерацией норма невязки уменьшается незначительно, либо не уменьшается вовсе.
2.2 Математическое описание алгоритма
Исходные данные: система линейных алгебраических уравнений [math]Ax=b[/math], где:
[math]A=(a_{ij})[/math] [math]-[/math] вещественная матрица размера [math]n \times n[/math];
[math]b[/math] и [math]x[/math] вектора из [math]n[/math] элементов;
[math]x^*[/math] [math]-[/math] точное решение системы.
2.2.1 Ортогонализация Арнольди
Для построения базиса в подпространстве Крылова в методе GMRESприменяется ортогонализация Арнольди.