Алгоритм Габова определения рёберной связности графа
Перейти к навигации
Перейти к поиску
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Габова[1] предназначен для определения рёберной связности графов. Время работы алгоритма [math]O(k m \ln (n^2/m))[/math] для ориентированного и [math]O(m + k^2 n \ln (n/k))[/math] для неориентированного графа, где [math]k[/math] – рёберная связность. Проверка свойства [math]k[/math]-связности тем же алгоритмом может быть выполнена за время [math]O(m + n \ln n)[/math].
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Время работы алгоритма [math]O(k m \ln (n^2/m))[/math] для ориентированного и [math]O(m + k^2 n \ln (n/k))[/math] для неориентированного графа, где [math]k[/math] – рёберная связность. Проверка свойства [math]k[/math]-связности тем же алгоритмом может быть выполнена за время [math]O(m + n \ln n)[/math].
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.2.1 Локальность реализации алгоритма
2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.4.1 Масштабируемость алгоритма
2.4.2 Масштабируемость реализации алгоритма
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература
- ↑ Gabow, H N. “A Matroid Approach to Finding Edge Connectivity and Packing Arborescences.” Journal of Computer and System Sciences 50, no. 2 (April 1995): 259–73. doi:10.1006/jcss.1995.1022.