Алгоритм Дейкстры

Материал из Алговики
Перейти к навигации Перейти к поиску
Get Perf.Data

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Алгоритм Дейкстры[1] предназначен для решения задачи поиска кратчайшего пути на графе. Для заданного ориентированного взвешенного графа с неотрицательными весами алгоритм находит кратчайшие расстояния от выделенной вершины-источника до всех остальных вершин графа. Алгоритм Дейкстры (с использованием фибоначчиевой кучи[2]) выполняется за время [math]O(m + n \ln n)[/math] и является асимптотически быстрейшим из известных последовательных алгоритмов для данного класса задач.

1.2 Математическое описание

Пусть задан граф [math]G = (V, E)[/math] с весами рёбер [math]f(e)[/math] и выделенной вершиной-источником [math]u[/math]. Обозначим через [math]d(v)[/math] кратчайшее расстояние от источника [math]u[/math] до вершины [math]v[/math].

Пусть уже вычислены все расстояния, не превосходящие некоторого числа [math]r[/math], то есть расстояния до вершин из множества [math]V_r = \{ v \in V \mid d(v) \le r \}[/math]. Пусть

[math] (v, w) \in \arg\min \{ d(v) + f(e) \mid v \in V, e = (v, w) \in E \}. [/math]

Тогда [math]d(w) = d(v) + f(e)[/math], и [math]v[/math] лежит на кратчайшем пути от [math]u[/math] к [math]w[/math].

Величины [math]d^+(w) = d(v) + f(e)[/math], где [math]v \in V_r[/math], [math]e = (v, w) \in E[/math], называются предполагаемыми расстояниями и являются оценкой сверху для настоящих расстояний: [math]d(w) \le d^+(w)[/math].

Алгоритм Дейкстры на каждом шаге находит вершину с наименьшим предполагаемым расстоянием, помечает её как посещённую и обновляет предполагаемые расстояния для всех концов рёбер, исходящих из неё.

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Описание схемы реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

Последовательная сложность алгоритма равна [math]O(C_1 m + C_2n)[/math], где

  • [math]C_1[/math] – количество операций уменьшения расстояния до вершины;
  • [math]C_2[/math] – количество операций вычисления минимума.

Оригинальный алгоритм Дейкстры использовал в качестве внутренней структуры данных списки, для которых [math]C_1 = O(1)[/math], [math]C_2 = O(n)[/math], так что общая сложность составляла [math]O(n^2)[/math].

При использовании фибоначчиевой кучи[2] время вычисления минимума сокращается до [math]C_2 = O(\ln n)[/math], так что общая сложность равна [math]O(m + n \ln n)[/math], что является асимптотически наилучшим известным результатом для данного класса задач.

1.7 Информационный граф

1.8 Описание ресурса параллелизма алгоритма

Алгоритм Дейкстры допускает эффективную параллелизацию[3], среднее время работы [math]O(n^{1/3}\ln n)[/math] с объёмом вычислений [math]O(n \ln n + m)[/math].

Алгоритм Δ-шагания может рассматриваться как параллельная версия алгоритма Дейкстры.

1.9 Описание входных и выходных данных

1.10 Свойства алгоритма

2 Программная реализация алгоритмов

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.3 Возможные способы и особенности реализации параллельного алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Dijkstra, E W. “A Note on Two Problems in Connexion with Graphs.” Numerische Mathematik 1, no. 1 (December 1959): 269–71. doi:10.1007/BF01386390.
  2. 2,0 2,1 Fredman, Michael L, and Robert Endre Tarjan. “Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms.” Journal of the ACM 34, no. 3 (July 1987): 596–615. doi:10.1145/28869.28874.
  3. Crauser, A, K Mehlhorn, U Meyer, and P Sanders. “A Parallelization of Dijkstra's Shortest Path Algorithm,” Proceedings of Mathematical Foundations of Computer Science / Lecture Notes in Computer Science, 1450:722–31, Berlin, Heidelberg: Springer, 1998. doi:10.1007/BFb0055823.
  4. Crauser, A, K Mehlhorn, U Meyer, and P Sanders. “A Parallelization of Dijkstra's Shortest Path Algorithm,” Proceedings of Mathematical Foundations of Computer Science / Lecture Notes in Computer Science, 1450:722–31, Berlin, Heidelberg: Springer, 1998. doi:10.1007/BFb0055823.