Уровень алгоритма

Алгоритм Ланцоша для арифметики с плавающей точкой с выборочной ортогонализацией

Материал из Алговики
Перейти к навигации Перейти к поиску

Авторы: Абдулпотиев А.А.



Алгоритм Ланцоша для арифметики с плавающей точкой с выборочной ортогонализацией
Последовательный алгоритм
Последовательная сложность [math]O(kn^2 + k^2n)[/math]
Объём входных данных [math]{n (n + 1) \over 2} + n + 1[/math]
Объём выходных данных [math]nk[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(kn + k^2)[/math]
Ширина ярусно-параллельной формы [math]O(n)[/math]


1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Прежде чем приступить к описанию алгоритма, нужно немного рассказать о самой проблеме, которую решает алгоритм Ланцоша и понятия, которые необходимы для освоения дальнейшего материала. Кратко говоря алгоритм Ланцоша это итерационный метод нахождения небольшого количества собственных значений столь больших разреженных симметричных матриц, что к ним нельзя применить прямые методы. Иными словами алгоритм сильно оптимизирует использование памяти и вычислительной мощности, что является критически важным для больших вычислений.

Сам алгоритм объединяет метод Ланцоша для построения крыловского подпространства с процедурой Рэлея-Ритца интерпретации собственных значений некоторой вычисляемой матрицы как приближений к собственным значениям исходной матрицы.

Пусть [math]Q = [Q_k,Q_u][/math] - ортогональная матрица порядка [math]n[/math], причем [math]Q_k[/math] и [math]Q_u[/math] имеют соответственно размеры [math]n \times k[/math] и [math]n \times (n-k)[/math]. Столбцы матрицы [math]Q_k[/math] вычисляются методом Ланцоша..

Запишем следующие соотношения:

[math]T = Q^T A Q = [Q_k, Q_u]^T A [Q_k, Q_u] = \left[ \begin{array}{cc} Q_k^T A Q_k & Q_k^T A Q_u\\ Q_u^T A Q_k & Q_u^T A Q_u \end{array} \right] = \left[ \begin{array}{cc} T_{k} & T_{ku}^T\\ T_{ku} & T_{u} \end{array} \right][/math]

Метод Рэлея-Ритца заключается в интерпретации собственных значений матрицы [math]T_k = Q_k^T A Q_k[/math] как приближенных к собственным значениям матрицы [math]A[/math]. Эти приближения называются числами Ритца. Если [math]A = V \Lambda V^T[/math] есть спектральное разложение матрицы [math]T_k[/math], то столбцы матрицы [math]Q_k V[/math] являются приближениями соответствующих собственных векторов и называются векторами Ритца.

Числа и векторы Ритца являются оптимальными приближениями к собственным значениям и собственным векторам матрицы [math]A[/math].

При применении метода Ланцоша в арифметике с плавающей точкой ортогональность в вычисленных векторах Ланцоша [math]q_k[/math] пропадает из-за ошибок округления. Потеря ортогональности не заставляет алгоритм вести себя совершенно не предсказуемым образом. В самом деле, мы увидим, что цена, которую мы платим за потерю, это приобретение повторных копий сошедшихся чисел Ритца. Для того чтобы поддержать взаимную ортогональность векторов Ланцоша, существуют две модификации алгоритма.

  1. Алгоритм Ланцоша с полной переортогонализацией. На каждой итерации запускается повторный процесс ортогонализации Грамма-Шмидта [math]z = z - \textstyle \sum_{i=1}^{j-1} (z^T q_i)q_i \displaystyle[/math]
  2. Алгоритм Ланцоша с выборочной ортогонализацией. Согласно теореме Пейджа векторы [math]q_k[/math] теряют ортогональность весьма систематическим образом, а именно, приобретая большие компоненты в направлениях уже сошедшихся векторов Ритца (Именно это приводит к появлению повторных копий сошедшихся чисел Ритца). Поэтому можно выборочно ортогонализировать векторы [math]q_k[/math] вместо того, чтобы на каждом шаге ортогонализировать вектор ко всем ранее сошедшимся векторам, как это делается при полной ортогонализации. Таким образом достигается (почти) ортогональности векторов Ланцоша, затрачивая очень небольшая дополнительную работу.

1.2 Математическое описание алгоритма

Пусть [math]A[/math] - заданная симметричная матрица, [math]b[/math] - вектор начального приближения метода Ланцоша. Тогда алгоритм Ланцоша вычисления собственных векторов и собственных значений матрицы [math]A[/math] с выборочной ортогонализацией имеет следующий вид:

[math] \begin{align} q_1 = & b / \Vert b \Vert_2, \; \beta_0 = 0,\; q_0 = 0\\ for \; & j = 1 \; to \; k \\ & z = A\,q_j\\ & \alpha_j = q_j^T z\\ & z = z - \alpha_j q_j - \beta_{j-1}q_{j-1}\\ & for \; i=1 \; to \; k \\ & \; \; \; if \; \beta_k \|v_i (k)\| \le \sqrt{\epsilon} \Vert T_k \Vert_2 \; then\\ & \; \; \; \; \; \; z = z - (y_{i,k} ^ T z) y_{i,k} \;/*\; y_{i,k} = Q_k v_i \;*/ \\ & end \; for\\ & \beta_j = \Vert z \Vert_2\\ & if \; \beta_j = 0 \; then\\ & \; \; \; Stop\; the\; algorithm\\ & q_{j+1} = z / \beta_j\\ & /*Calculate\; eigenvalues\; and\; eigenvektors\; of\; T_j\; */\\ end \; & for \end{align} [/math]

Где [math]v_i[/math] - это столбцы ортогональной матрицы [math]V[/math] из спектрального разложения [math]T_k = V \Lambda V^T[/math], а [math]y_{k,i} = Q_k v_i[/math] - столбцы матрицы [math]Q_k V[/math] - векторы Ритца.

Матрица [math]T_j[/math]

[math] T_j = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{j-1} \\ & & & \beta_{j-1} & \alpha_j \end{pmatrix}\; [/math]


Согласно теореме Пейджа, [math]y_{k,i}^T q_{k+1} = O(\epsilon \Vert A \Vert_2) / \beta_k \Vert v_i(k) \Vert[/math], то есть компонента [math]y_{k,i}^T q_{k+1}[/math] вычисленного вектора Ланцоша [math]q_{k+1}[/math] в направлении вектора Ритца [math]y_{k,i} = Q_k v_i[/math] обратно пропорциональна величине [math]\beta_k \Vert v_i(k) \Vert[/math], являющейся оценкой погрешности для соответствующего числа Ритца. Поэтому, когда число Ритца сходится, а его оценка погрешности приближается к нулю, вектор Ланцоша приобретает большую компоненту в направлении вектора Ритца [math]q_{k,i}[/math], и следует произвести процедуру переортогонализации.

Величина погрешности [math]\beta_k \Vert v_i(k) \Vert[/math] считается малой, если она меньше, чем [math]\sqrt{\epsilon} \Vert A \Vert_2[/math], так как в этом случае, согласно теореме Пейджа, компонента [math]\Vert y_{i,k}^T q_{k+1} \Vert = \Vert y_{i,k}^T z \Vert / \Vert z \Vert_2[/math] скорее всего превосходит уровень [math]\sqrt{\epsilon}[/math] (на практике используется [math]\Vert T_k \Vert_2[/math] вместо [math]\Vert A \Vert_2[/math], так как первое известно, а второе не всегда).

1.3 Вычислительное ядро алгоритма

У описанного алгоритма два ядра, на которые приходится основное время работы алгоритма:

  • Вычисление вектора [math]z = A q_j[/math]
  • Выборочная переортогонализация [math]z = z - (y_{i,k} ^ T z) y_{i,k}[/math]

При больших [math]k[/math], сопоставимых с [math]n[/math] , к вычислительному ядру можно отнести вычисление собственных значений и собственных векторов трёхдиагональной матрицы. Однако на практике [math]k[/math] много меньше [math]n[/math].

1.4 Макроструктура алгоритма

Макроструктура алгоритма Ланцоша с выборочной переортогонализацией представляется в виде совокупности метода Ланцоша с выборочной переортогонализацией построения крыловского подпространства и процедуры Рэлея-Ритца.

Каждая итерация первого этапа может быть разложена на следующие макроединицы:

  • Умножение матрицы на вектор
  • Вычисление скалярного произведения векторов
  • Умножение векторов на числа и вычитание векторов
  • При выполнении условия необходимости переортогонализации – перемножение и вычитание векторов
  • Вычисление нормы вектора
  • Умножение вектора на число

Второй этап, процедура Рэлея-Ритца, заключается в нахождении собственных значений и собственных векторов матрицы и интерпретации их как приближенных значений собственных чисел и собственных векторов исходной матрицы, он может быть выполнен любым способом, например, разделяй и властвуй или же QR-итерацией.

1.5 Схема реализации последовательного алгоритма

На вход алгоритму подаются исходная матрица [math]A[/math], вектор начального приближения [math]b[/math] и число [math]k[/math]. Далее последовательно выполняются итерационно для всех [math]j: 1 \le j \le k[/math] следующие шаги:

  1. Умножается матрица на вектор для нахождения вектора [math]z[/math]
  2. Вычисляется коэффициент [math]\Alpha_j[/math] посредством скалярного перемножения векторов
  3. Вычисляется новое значение вектора [math]z[/math]
  4. Производятся оценка погрешностей [math]\beta_k \Vert v_i(k) \Vert[/math] и выборочная переортогонализация
  5. Вычисление очередного значения [math]\beta_j[/math] - норма вектора [math]z[/math]
  6. Вычисление и добавление к матрице [math]Q[/math] нового столбца
  7. Вычисление собственных значений и собственных векторов матрицы [math]T_j[/math]

1.6 Последовательная сложность алгоритма

  • Вычисление вектора [math]z[/math] - [math]n^2[/math] операций умножения и [math]n(n-1)[/math] операций сложения
  • Вычисление скалярного произведения векторов - [math]n[/math] операций умножения и [math](n-1)[/math] сложений
  • Вычисление вектора [math]z[/math] - [math]2n[/math] умножений и [math]2n[/math] сложений
  • Оценка погрешностей - [math]kn[/math] операций умножения
  • Выборочная переортогонализация - [math]O(2nj)[/math] умножений и [math]O(2j(n-1) + n)[/math] сложений
  • Вычисление нормы вектора - [math]n[/math] операций умножения и [math](n-1)[/math] сложений
  • Вычисление нового столбца матрицы [math]Q[/math] - [math]n[/math] операций умножения

Итого на каждой итерации:

  • Умножений: [math]n^2 + n + 2n + kn + O(2nj) + n + n = n^2 + 5n + kn + O(2nj)[/math]
  • Сложений: [math]n(n-1) + n-1 + 2n + O(2j(n-1) + n) + n-1 = n^2 + 3n + O(2j(n-1) + n) -2[/math]

Итого за все время выполнения алгоритма:

  • Умножений: [math]kn^2 + 5kn + k^2n + O(k^2n + kn)[/math]
  • Сложений: [math]kn^2 + 3kn + O((k^2+k)(n-1)+kn) = kn^2 + 3kn + O(k^2(n-1)+2kn-k)[/math]

Суммарная последовательная сложность алгоритма - [math]O(kn^2 + k^2n)[/math].

1.7 Информационный граф

Ниже представлен граф одной итерации алгоритма с разделением на [math]n[/math] потоков.

Рисунок 1. Детальный граф алгоритма Ланцоша с выборочной переортогонализацией.

Oper - простая операция сложения/вычитания/умножения/деления с числами с плавающей точкой.
'?' - проверка условия на необходимость переортогонализации.

На вход итерации подается матрица [math]A[/math] и вектор [math]q_j[/math], на выходе получаем новый вектор [math]q_{j+1}[/math]

1.8 Ресурс параллелизма алгоритма

Поскольку алгоритм является итерационным, то выполнять параллельные операции возможно только внутри каждой итерации алгоритма. Сами итерации выполняются в строгой последовательности и не могут быть параллелизованны:

  • Вычисление вектора [math]z[/math] - умножение матрицы размера [math]n \times n[/math] на вектор длины [math]n[/math] - [math]n[/math] ярусов сложений, [math]n[/math] операций умножений в каждом
  • Вычисление коэффициента [math]\alpha_j[/math] - скалярное произведение векторов - [math]n[/math] ярусов сложений, 1 операция умножения в каждом
  • Вычисление нового значения вектора [math]z[/math]: 2 яруса умножений длины [math]n[/math] (умножение вектора на число), 2 яруса вычитаний длины [math]n[/math]
  • Выборочная переортогонализация: последовательно для всех [math]i \le k[/math] выполняется [math]j[/math] ярусов сложений, [math]n[/math] операций умножений в каждом, [math]n[/math] ярусов сложений, [math]j[/math] операций умножений в каждом, один ярус вычитаний размера [math]n[/math]
  • Вычисление [math]\beta_j[/math] - скалярное произведение векторов - [math]n[/math] ярусов сложений, 1 операция умножения в каждом
  • Вычисление [math]q_j[/math] - деление вектора на число - один ярус делений размера [math]n[/math]

Сложность алгоритма по ширине ярусно параллельной формы - [math]O(n)[/math].

1.9 Входные и выходные данные алгоритма

Входные данные: вещественная матрица [math]A[/math] размера [math]n \times n[/math], вектор [math]b[/math] длины [math]n[/math], число [math]k[/math], но учитывая что матрица у нас симметричная количество входных данных можно уменьшить в два раза.

Объем входных данных: [math]{n (n + 1) \over 2} + n + 1[/math]

Выходные данные: матрица [math]Q[/math] размера [math]n \times k[/math]

Объем выходных данных: [math]nk[/math]

1.10 Свойства алгоритма

  • Преимуществом алгоритма является то, что он начинает поиск собственных значений матрицы начиная с максимального в абсолютном смысле значения. Это выгодно отличает данный алгоритм с точки зрения поиска собственных значений матрицы, находящихся по краям её спектра.
  • Вычислительная мощность алгоритма - отношение числа операций к суммарному объему входных и выходных данных - примерно равно [math]2k[/math] при [math]k \lt \lt n[/math]
  • Алгоритм устойчив, так как операция переортогонализации как раз направлена на исключение проблемы округления вычисляемых значений
  • Алгоритм не является детерминированным, так как, во-первых, используется для разряженных матриц, и, во-вторых, является итерационным с выходом по точности - число операций заранее не определено
  • Алгоритм содержит длинные дуги, так как на протяжении всего процесса его выполнения нужно хранить исходную матрицу [math]A[/math] и матрицу [math]Q[/math] - они нужны на каждой итерации

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

Исследование масштабируемости алгоритма проводилось на суперкомпьютере IBM Blue Gene/P ВМК МГУ.

Для компиляции программы использовались компиляторы intel/15.0.090 и Openmpi/1.8.4-icc.

Для проведения расчетов и получения полноценной картины поведения алгоритма в зависимости от входных данных и числа процессоров, программа была запущена на следующих параметрах:

  • в качестве размера входной матрицы подавались значения в диапазоне [2000:30000] c шагом 2000.
  • Число процессоров варьировалось от 1 до 256.
  • В качестве числа, отвечающего за количество выполняемых методом итераций бралось значение 100.

Ниже на рисунке изображен трехмерный график, показывающий зависимость времени выполнения программы от входных данных/

График зависимости времени выполнения программы от входных данных

Также была исследована эффективность распараллеливания:

  • Средняя эффективность выполнения алгоритма составила порядка 12%
  • Наивысший показатель равен 43%
  • Минимальное значение составило <1%

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Неплохой обзор существующих реализаций находится здесь: A Survey of Software for Sparse Eigenvalue Problems

Ниже будут перечислены только те реализации, которые поддерживают именно выборочную ортогонализацию.

  • BLZPACK FORTRAN 77, MPI. 2000 год.
  • BLKLAN C, MATLAB. Нет поддержки параллелизма. 2003 год.
  • PROPACK FORTRAN 77, MATLAB. OpenMP. Предназначен для нахождения SVD разложения, но алгоритм Ланцоша может быть вызван и напрямую. 2005 год.
  • LANZ FORTRAN 77. Нет поддержки параллелизма. 1991 год.
  • SVDPACK C, FORTRAN 77. Нет поддержки параллелизма. Предназначен для нахождения SVD разложения. 1992 год.

3 Литература

  • Дж. Деммель, Вычислительная линейная алгебра. Теория и приложения. Пер. с англ. - М.: Мир, 2001.