Уровень алгоритма

Метод сдваивания Стоуна для решения двудиагональных СЛАУ: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[досмотренная версия][досмотренная версия]
(Новая страница: «{{algorithm}} == Свойства и структура алгоритмов == === Общее описание алгоритма === '''Алгоритм сд…»)
 
м
Строка 22: Строка 22:
 
{{Шаблон:U2dCommon}}
 
{{Шаблон:U2dCommon}}
  
Важным моментом является то, что алгоритм Стоуна использует то же самое разложение, что вычисляется не только в [[алгоритме сдваивания Стоуна для LU-разложения трёхдиагональной матрицы|Алгоритм сдваивания Стоуна для LU-разложения трёхдиагональной матрицы]], но и в устойчивой [[Компактная схема метода Гаусса для трёхдиагональной матрицы, последовательный вариант|компактной схеме метода Гаусса]].
+
Важным моментом является то, что алгоритм Стоуна использует то же самое разложение, что вычисляется не только в первой части метода ([[Алгоритм сдваивания Стоуна для LU-разложения трёхдиагональной матрицы|алгоритме сдваивания Стоуна для LU-разложения трёхдиагональной матрицы]]), но и в устойчивой [[Компактная схема метода Гаусса для трёхдиагональной матрицы, последовательный вариант|компактной схеме метода Гаусса]].
 
 
 
 
  
 
=== Математическое описание алгоритма ===
 
=== Математическое описание алгоритма ===

Версия 17:27, 10 декабря 2016



1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Алгоритм сдваивания Стоуна для решения двухдиагональных СЛАУ - часть метода сдваивания Стоуна для решения СЛАУ[1][2] вида [math]Ax = b[/math], где

[math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \\ \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \\ \end{bmatrix} [/math]

Метод сдваивания Стоуна впервые предложен в начале 70-х гг. 20го века[3] в качестве альтернативы другим параллельным алгоритмам решения трёхдиагональных СЛАУ, например, методу циклической редукции.

Здесь рассматривается его вторая часть - решение двух двухдиагональных СЛАУ. Оно использует представление матрицы

[math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix} [/math]

в виде произведения матриц

[math] L = \begin{bmatrix} 1 & 0 & 0 & \cdots & \cdots & 0 \\ l_{21} & 1 & 0 & \cdots & \cdots & 0 \\ 0 & l_{32} & 1 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & l_{n-1 n-2} & 1 & 0 \\ 0 & \cdots & \cdots & 0 & l_{n n-1} & 1 \\ \end{bmatrix} [/math]

и

[math] U = \begin{bmatrix} u_{11} & u_{12} & 0 & \cdots & \cdots & 0 \\ 0 & u_{22} & u_{23}& \cdots & \cdots & 0 \\ 0 & 0 & u_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & u_{n-1 n-1} & u_{n-1 n} \\ 0 & \cdots & \cdots & 0 & 0 & u_{n n} \\ \end{bmatrix} [/math]

Важным моментом является то, что алгоритм Стоуна использует то же самое разложение, что вычисляется не только в первой части метода (алгоритме сдваивания Стоуна для LU-разложения трёхдиагональной матрицы), но и в устойчивой компактной схеме метода Гаусса.

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

Метод Стоуна изначально спроектирован для параллельного исполнения, поскольку является по отношению к, например, классической прогонке, алгоритмом с избыточными вычислениями. Смысла в его последовательной реализации нет ещё и из-за того, что он неустойчив.

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

Из-за большой избыточности вычислений метод Стоуна никогда не предназначался для последовательной реализации. После обнаружения неустойчивости его первой части стало ясно, что и в будущем он не будет реализован на последовательных архитектурах.

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Из-за неустойчивости первой части метода его не используют на практике, поэтому планировавшаяся в исходной публикации[3] замена более популярной циклической редукции не удалась. Реализаций схемы Стоуна отсутствуют в пакетах программ, даже в её второй (устойчивой) части.

3 Литература

  1. Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
  2. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.
  3. 3,0 3,1 Stone H.S. An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of Equations // J. ACM, Vol. 20, No. 1 (Jan. 1973), P. 27-38.